Hericium erinaceus (Bull.: Fr.) Pers., a medicinal mushroom, activates peripheral nerve regeneration

Abstract

Objective

To study the ability of aqueous extract of Hericium erinaceus mushroom in the treatment of nerve injury following peroneal nerve crush in Sprague-Dawley rats.

Methods

Aqueous extract of Hericium erinaceus was given by daily oral administration following peroneal nerve crush injury in Sprague-Dawley rats. The expression of protein kinase B (Akt) and mitogen-activated protein kinase (MAPK) signaling pathways; and c-Jun and c-Fos genes were studied in dorsal root ganglia (DRG) whereas the activity of protein synthesis was assessed in peroneal nerves by immunohistochemical method.

Results

Peripheral nerve injury leads to changes at the axonal site of injury and remotely located DRG containing cell bodies of sensory afferent neurons. Immunofluorescence studies showed that DRG neurons ipsilateral to the crush injury in rats of treated groups expressed higher immunoreactivities for Akt, MAPK, c-Jun and c-Fos as compared with negative control group (P <0.05). The intensity of nuclear ribonucleoprotein in the distal segments of crushed nerves of treated groups was significantly higher than in the negative control group (P <0.05).

Conclusion

H. erinaceus is capable of promoting peripheral nerve regeneration after injury. Potential signaling pathways include Akt, MAPK, c-Jun, and c-Fos, and protein synthesis have been shown to be involved in its action.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Crowder RJ, Freeman RS. Phosphatidylinositol 3-kinase and Akt protein kinase are necessary and sufficient for the survival of nerve growth factor-dependent sympathetic neurons. J Neurosci 1998;18:2933–2943.

    CAS  PubMed  Google Scholar 

  2. 2.

    Kaplan DR, Miller FD. Signal transduction by the neurotrophin receptors. Curr Opin Cell Biol 1997;9:213–221.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Broude E, McAtee M, Kelley MS, Bregman BS. c-Jun expression in adult rat dorsal root ganglion neurons: differential response after central or peripheral axotomy. Exp Neurol 1997;148:367–377.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Tsai YC, So EC, Chen HH, Wang LK, Chien CH. Effect of intrathecal octreotide on thermal hyperalgesia and evoked spinal c-Fos expression in rats with sciatic constriction injury. Pain 2002;99:407–413.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Verma P, Chierzi S, Codd AM, Campbell DS, Meyer RL, Holt CE, et al. Axonal protein synthesis and degradation are necessary for efficient growth cone regeneration. J Neurosci 2005;25:331–342.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Willis D, Li KW, Zheng JQ, Smit AB, Kelly TK, Merianda TT, et al. Differential transport and local translation of cytoskeletal, injury-response, and neurodegeneration protein mRNAs in axons. J Neurosci 2005;25:778–791.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Miles PG, Chang ST. Mushroom biology: concise basics and current developments. Singapore: World Scientific Press; 1997:1–9.

    Book  Google Scholar 

  8. 8.

    Kawagishi H, Zhuang C, Yunoki R. Compounds for dementia from Hericium erinaceum. Drugs Future 2008;33:149–155.

    CAS  Article  Google Scholar 

  9. 9.

    Moldavan MG, Grygansky A, Kolotushkina OV, Kirchhoff B, Skibo GG, Pedarzani P. Neurotropic and trophic action of lion’s mane mushroom Hericium erinaceus (Bull.: Fr) Pers. (Aphyllophoromycetideae) extracts on nerve cells in vitro. Int J Med Mush 2007;9:15–28.

    CAS  Article  Google Scholar 

  10. 10.

    Kolotushkina EV, Moldavan MG, Voronin KY, Skibo GG. The influence of Hericium erinaceus extract on myelination process in vitro. Fiziologicheskii Zhur 2003;49:38–45.

    CAS  Google Scholar 

  11. 11.

    Wong KH, Sabaratnam V, Abdullah N, Naidu M, Keynes R. Activity of aqueous extracts of lion’s mane mushroom Hericium erinaceus (Bull.: Fr.) Pers. (Aphyllophoromycetideae) on the neural cell line NG108-115. Int J Med Mushr 2007;9:57–65.

    Article  Google Scholar 

  12. 12.

    Wong KH, Naidu M, David P, Abdulla MA, Abdullah N, Kuppusamy UR, et al. Peripheral nerve regeneration following crush injury to rat peroneal nerve by aqueous extract of medicinal mushroom Hericium erinaceus (Bull.: Fr) Pers. (Aphyllophoromycetideae). Evid Based Complment Altern Med 2011;doi: 10.1093/ecam/neq062

    Google Scholar 

  13. 13.

    Association of Official Analytical Chemists (AOAC). Official methods of analysis of the Association of Official Analytical Chemists. 15th ed. USA: Washington, DC; 1990:751.

    Google Scholar 

  14. 14.

    American Association of Cereal Chemists (AACC International). Approved methods of analysis-method 08-01.01, 30-10.01, 46-12.01 and 32-10.01. 16th ed. USA: St. Paul, MN; 1995.

    Google Scholar 

  15. 15.

    Roy SK, Maiti D, Mondal S, Das D, Islam SS. Structural analysis of a polysaccharide isolated from the aqueous extract of an edible mushroom, Pleurotus sajor-caju, cultivar Black Japan. Carbohydrate Res 2008;343:1108–1113.

    CAS  Article  Google Scholar 

  16. 16.

    Kozarski M, Klaus A, Niksi M, Jakovljevic D, Helsper JPFG, van Griensven LJLD. Antioxidative and immunomodulating activities of polysaccharide extracts of the medicinal mushrooms Agaricus bisporus, Agaricus brasiliensis, Ganoderma lucidum and Phellinus linteus. Food Chem 2011:129:1667–1675.

    CAS  Article  Google Scholar 

  17. 17.

    Chen B, Song Y, Liu Z. Promotion of nerve regeneration in peripheral nerve by short-course FK506 after end-to-side neurorrhaphy. J Surg Res 2009;152:303–310.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Algora J, Chen LE, Seaber AV, Wong GH, Urbaniak JR. Functional effects of lymphotoxin on crushed peripheral nerve. Microsurgery 1996;17:131–135.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Wong KH, Sabaratnam V, Abdullah N, Kuppusamy UR, Naidu M. Effects of cultivation techniques and processing on antimicrobial and antioxidant activities of Hericium erinaceus (Bull.: Fr.) Pers. extracts. Food Tech Biotechnol 2009;47:47–55.

    CAS  Google Scholar 

  20. 20.

    Kim JH, Ha HC, Lee MS, Kang JI, Kim HS, Lee SY, et al. Effect of Tremella fuciformis on the neurite outgrowth of PC12h cells and the improvement of memory in rats. Biol Pharm Bull 2007;30:708–714.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Gorio A, Lesma E, Vergani L, Di Giulio AM. Glycosaminoglycan supplementation promotes nerve regeneration and muscle reinnervation. Eur J Neurosci 1997;9:1748–1753.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Rop O, Mlcek J, Jurikova T. Beta-glucans in higher fungi and their health effects. Nutr Rev 2009;67:624–631.

    Article  PubMed  Google Scholar 

  23. 23.

    Edagawa Y, Smriga M, Nishiyama N, Saito H. Systemic administration of lentinan, a branched beta-glucan, enhances long-term potentiation in the rat dentate gyrus in vivo. Neurosci Lett 2001; 314:139–142.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Tsukagoshi S, Hashimoto Y, Fujii G, Kobayashi H, Nomoto K, Orita K. Krestin (PSK). Cancer Treat Rev 1984;11:131–155.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Choong YK, Abdul Rashid BA, Young SI, Young SI, Ismail Z. Quantification and identification of polysaccharide contents in Hericium erinaceus. Nutr Food Sci 2007;37:260–271.

    Article  Google Scholar 

  26. 26.

    Wen YR, Suter MR, Ji RR, Yeh GC, Wu YS, Wang KC, et al. Activation of p38 mitogen-activated protein kinase in spinal microglia contributes to incision-induced mechanical allodynia. Anesthesiology 2009;1:155–165.

    Article  Google Scholar 

  27. 27.

    Naidu M, David RP, Asher R, Fawcett J. Expression of Akt and MAPK in the normal and regenerating peripheral nerves and their dorsal root ganglia. Malaysian J Biochem Mol Biol 2009;17:16–19.

    CAS  Google Scholar 

  28. 28.

    Ito Y, Sakagami H, Kondo H. Enhanced gene expression for phosphatidylinositol 3-kinase in the hypoglossal motoneurons following axonal crush. Mol Brain Res 1996;37:329–332.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Sweatt JD. The neuronal MAP kinase cascade: a biochemical signal integration system subserving synaptic plasticity and memory. J Neurochem 2001;76:1–10.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Namikawa K, Honma M, Abe K, Takeda M, Mansur K, Obata T, et al. Akt/protein kinase B prevents injury-induced motoneuron death and accelerates axonal regeneration. J Neurosci 2002;20:2875–2886.

    Google Scholar 

  31. 31.

    Raivich G, Behrens A. Role of the AP-1 transcription factor c-Jun in developing, adult and injured brain. Prog Neurobiol 2006;78:347–363.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Kajander KC, Madsen AM, Iadarola MJ, Draisci G, Wakisaka S. Fos-like immunoreactivity increases in the lumbar spinal cord following a chronic constriction injury to the sciatic nerve of rat. Neurosci Lett 1996;206:9–12.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Kenney AM, Kocsis JD. Timing of c-Jun protein induction in lumbar dorsal root ganglia after sciatic nerve transection varies with lesion distance. Brain Res 1997;751:90–95.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Leah JD, Herdegen T, Bravo R. Selective expression of Jun proteins following axotomy and axonal transport block in peripheral nerves in the rat: evidence for a role in the regeneration process. Brain Res 1991;566:198–207.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Chi SI, Levine JD, Basbaum AI. Peripheral and central contributions to the persistent expression of spinal cord foslike immunoreactivity produced by sciatic nerve transection in the rat. Brain Res 1993;617:225–237.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Zheng JQ, Kelly TK, Chang B, Ryanzantsev S, Rajasekaran AK, Martin KC, et al. A functional role for intra-axonal protein synthesis during axonal regeneration from adult sensory neurons. J Neurosci 2001;21:9291–9303.

    CAS  PubMed  Google Scholar 

  37. 37.

    Willis DE, Twiss JL. The evolving roles of axonally synthesized proteins in regeneration. Curr Opin Neurobiol 2006;16:111–118.

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Bamburg JR, McGough A, Ono S. Putting a new twist on actin: ADF/cofilins modulate actin dynamics. Trends Cell Biol 1999;9:364–370.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Giuditta A, Kaplan BB, van Minnen J, Alvarez J, Koenig E. Axonal and presynaptic protein synthesis: new insights into the biology of the neuron. Trends Neurosci 2002;25(8):400–404.

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kah-Hui Wong.

Additional information

Supported by the High Impact Research Grant and Fundamental Research Grant Scheme FP023/2008C of University of Malaya

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wong, KH., Kanagasabapathy, G., Naidu, M. et al. Hericium erinaceus (Bull.: Fr.) Pers., a medicinal mushroom, activates peripheral nerve regeneration. Chin. J. Integr. Med. 22, 759–767 (2016). https://doi.org/10.1007/s11655-014-1624-2

Download citation

Keywords

  • Hericium erinaceus
  • dorsal root ganglia
  • signaling pathways
  • gene expression
  • protein synthesis machinery
  • peripheral nerve regeneration