Advertisement

Chinese Journal of Integrative Medicine

, Volume 22, Issue 10, pp 759–767 | Cite as

Hericium erinaceus (Bull.: Fr.) Pers., a medicinal mushroom, activates peripheral nerve regeneration

  • Kah-Hui WongEmail author
  • Gowri Kanagasabapathy
  • Murali Naidu
  • Pamela David
  • Vikineswary Sabaratnam
Original Article

Abstract

Objective

To study the ability of aqueous extract of Hericium erinaceus mushroom in the treatment of nerve injury following peroneal nerve crush in Sprague-Dawley rats.

Methods

Aqueous extract of Hericium erinaceus was given by daily oral administration following peroneal nerve crush injury in Sprague-Dawley rats. The expression of protein kinase B (Akt) and mitogen-activated protein kinase (MAPK) signaling pathways; and c-Jun and c-Fos genes were studied in dorsal root ganglia (DRG) whereas the activity of protein synthesis was assessed in peroneal nerves by immunohistochemical method.

Results

Peripheral nerve injury leads to changes at the axonal site of injury and remotely located DRG containing cell bodies of sensory afferent neurons. Immunofluorescence studies showed that DRG neurons ipsilateral to the crush injury in rats of treated groups expressed higher immunoreactivities for Akt, MAPK, c-Jun and c-Fos as compared with negative control group (P <0.05). The intensity of nuclear ribonucleoprotein in the distal segments of crushed nerves of treated groups was significantly higher than in the negative control group (P <0.05).

Conclusion

H. erinaceus is capable of promoting peripheral nerve regeneration after injury. Potential signaling pathways include Akt, MAPK, c-Jun, and c-Fos, and protein synthesis have been shown to be involved in its action.

Keywords

Hericium erinaceus dorsal root ganglia signaling pathways gene expression protein synthesis machinery peripheral nerve regeneration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Crowder RJ, Freeman RS. Phosphatidylinositol 3-kinase and Akt protein kinase are necessary and sufficient for the survival of nerve growth factor-dependent sympathetic neurons. J Neurosci 1998;18:2933–2943.PubMedGoogle Scholar
  2. 2.
    Kaplan DR, Miller FD. Signal transduction by the neurotrophin receptors. Curr Opin Cell Biol 1997;9:213–221.CrossRefPubMedGoogle Scholar
  3. 3.
    Broude E, McAtee M, Kelley MS, Bregman BS. c-Jun expression in adult rat dorsal root ganglion neurons: differential response after central or peripheral axotomy. Exp Neurol 1997;148:367–377.CrossRefPubMedGoogle Scholar
  4. 4.
    Tsai YC, So EC, Chen HH, Wang LK, Chien CH. Effect of intrathecal octreotide on thermal hyperalgesia and evoked spinal c-Fos expression in rats with sciatic constriction injury. Pain 2002;99:407–413.CrossRefPubMedGoogle Scholar
  5. 5.
    Verma P, Chierzi S, Codd AM, Campbell DS, Meyer RL, Holt CE, et al. Axonal protein synthesis and degradation are necessary for efficient growth cone regeneration. J Neurosci 2005;25:331–342.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Willis D, Li KW, Zheng JQ, Smit AB, Kelly TK, Merianda TT, et al. Differential transport and local translation of cytoskeletal, injury-response, and neurodegeneration protein mRNAs in axons. J Neurosci 2005;25:778–791.CrossRefPubMedGoogle Scholar
  7. 7.
    Miles PG, Chang ST. Mushroom biology: concise basics and current developments. Singapore: World Scientific Press; 1997:1–9.CrossRefGoogle Scholar
  8. 8.
    Kawagishi H, Zhuang C, Yunoki R. Compounds for dementia from Hericium erinaceum. Drugs Future 2008;33:149–155.CrossRefGoogle Scholar
  9. 9.
    Moldavan MG, Grygansky A, Kolotushkina OV, Kirchhoff B, Skibo GG, Pedarzani P. Neurotropic and trophic action of lion’s mane mushroom Hericium erinaceus (Bull.: Fr) Pers. (Aphyllophoromycetideae) extracts on nerve cells in vitro. Int J Med Mush 2007;9:15–28.CrossRefGoogle Scholar
  10. 10.
    Kolotushkina EV, Moldavan MG, Voronin KY, Skibo GG. The influence of Hericium erinaceus extract on myelination process in vitro. Fiziologicheskii Zhur 2003;49:38–45.Google Scholar
  11. 11.
    Wong KH, Sabaratnam V, Abdullah N, Naidu M, Keynes R. Activity of aqueous extracts of lion’s mane mushroom Hericium erinaceus (Bull.: Fr.) Pers. (Aphyllophoromycetideae) on the neural cell line NG108-115. Int J Med Mushr 2007;9:57–65.CrossRefGoogle Scholar
  12. 12.
    Wong KH, Naidu M, David P, Abdulla MA, Abdullah N, Kuppusamy UR, et al. Peripheral nerve regeneration following crush injury to rat peroneal nerve by aqueous extract of medicinal mushroom Hericium erinaceus (Bull.: Fr) Pers. (Aphyllophoromycetideae). Evid Based Complment Altern Med 2011;doi: 10.1093/ecam/neq062Google Scholar
  13. 13.
    Association of Official Analytical Chemists (AOAC). Official methods of analysis of the Association of Official Analytical Chemists. 15th ed. USA: Washington, DC; 1990:751.Google Scholar
  14. 14.
    American Association of Cereal Chemists (AACC International). Approved methods of analysis-method 08-01.01, 30-10.01, 46-12.01 and 32-10.01. 16th ed. USA: St. Paul, MN; 1995.Google Scholar
  15. 15.
    Roy SK, Maiti D, Mondal S, Das D, Islam SS. Structural analysis of a polysaccharide isolated from the aqueous extract of an edible mushroom, Pleurotus sajor-caju, cultivar Black Japan. Carbohydrate Res 2008;343:1108–1113.CrossRefGoogle Scholar
  16. 16.
    Kozarski M, Klaus A, Niksi M, Jakovljevic D, Helsper JPFG, van Griensven LJLD. Antioxidative and immunomodulating activities of polysaccharide extracts of the medicinal mushrooms Agaricus bisporus, Agaricus brasiliensis, Ganoderma lucidum and Phellinus linteus. Food Chem 2011:129:1667–1675.CrossRefGoogle Scholar
  17. 17.
    Chen B, Song Y, Liu Z. Promotion of nerve regeneration in peripheral nerve by short-course FK506 after end-to-side neurorrhaphy. J Surg Res 2009;152:303–310.CrossRefPubMedGoogle Scholar
  18. 18.
    Algora J, Chen LE, Seaber AV, Wong GH, Urbaniak JR. Functional effects of lymphotoxin on crushed peripheral nerve. Microsurgery 1996;17:131–135.CrossRefPubMedGoogle Scholar
  19. 19.
    Wong KH, Sabaratnam V, Abdullah N, Kuppusamy UR, Naidu M. Effects of cultivation techniques and processing on antimicrobial and antioxidant activities of Hericium erinaceus (Bull.: Fr.) Pers. extracts. Food Tech Biotechnol 2009;47:47–55.Google Scholar
  20. 20.
    Kim JH, Ha HC, Lee MS, Kang JI, Kim HS, Lee SY, et al. Effect of Tremella fuciformis on the neurite outgrowth of PC12h cells and the improvement of memory in rats. Biol Pharm Bull 2007;30:708–714.CrossRefPubMedGoogle Scholar
  21. 21.
    Gorio A, Lesma E, Vergani L, Di Giulio AM. Glycosaminoglycan supplementation promotes nerve regeneration and muscle reinnervation. Eur J Neurosci 1997;9:1748–1753.CrossRefPubMedGoogle Scholar
  22. 22.
    Rop O, Mlcek J, Jurikova T. Beta-glucans in higher fungi and their health effects. Nutr Rev 2009;67:624–631.CrossRefPubMedGoogle Scholar
  23. 23.
    Edagawa Y, Smriga M, Nishiyama N, Saito H. Systemic administration of lentinan, a branched beta-glucan, enhances long-term potentiation in the rat dentate gyrus in vivo. Neurosci Lett 2001; 314:139–142.CrossRefPubMedGoogle Scholar
  24. 24.
    Tsukagoshi S, Hashimoto Y, Fujii G, Kobayashi H, Nomoto K, Orita K. Krestin (PSK). Cancer Treat Rev 1984;11:131–155.CrossRefPubMedGoogle Scholar
  25. 25.
    Choong YK, Abdul Rashid BA, Young SI, Young SI, Ismail Z. Quantification and identification of polysaccharide contents in Hericium erinaceus. Nutr Food Sci 2007;37:260–271.CrossRefGoogle Scholar
  26. 26.
    Wen YR, Suter MR, Ji RR, Yeh GC, Wu YS, Wang KC, et al. Activation of p38 mitogen-activated protein kinase in spinal microglia contributes to incision-induced mechanical allodynia. Anesthesiology 2009;1:155–165.CrossRefGoogle Scholar
  27. 27.
    Naidu M, David RP, Asher R, Fawcett J. Expression of Akt and MAPK in the normal and regenerating peripheral nerves and their dorsal root ganglia. Malaysian J Biochem Mol Biol 2009;17:16–19.Google Scholar
  28. 28.
    Ito Y, Sakagami H, Kondo H. Enhanced gene expression for phosphatidylinositol 3-kinase in the hypoglossal motoneurons following axonal crush. Mol Brain Res 1996;37:329–332.CrossRefPubMedGoogle Scholar
  29. 29.
    Sweatt JD. The neuronal MAP kinase cascade: a biochemical signal integration system subserving synaptic plasticity and memory. J Neurochem 2001;76:1–10.CrossRefPubMedGoogle Scholar
  30. 30.
    Namikawa K, Honma M, Abe K, Takeda M, Mansur K, Obata T, et al. Akt/protein kinase B prevents injury-induced motoneuron death and accelerates axonal regeneration. J Neurosci 2002;20:2875–2886.Google Scholar
  31. 31.
    Raivich G, Behrens A. Role of the AP-1 transcription factor c-Jun in developing, adult and injured brain. Prog Neurobiol 2006;78:347–363.CrossRefPubMedGoogle Scholar
  32. 32.
    Kajander KC, Madsen AM, Iadarola MJ, Draisci G, Wakisaka S. Fos-like immunoreactivity increases in the lumbar spinal cord following a chronic constriction injury to the sciatic nerve of rat. Neurosci Lett 1996;206:9–12.CrossRefPubMedGoogle Scholar
  33. 33.
    Kenney AM, Kocsis JD. Timing of c-Jun protein induction in lumbar dorsal root ganglia after sciatic nerve transection varies with lesion distance. Brain Res 1997;751:90–95.CrossRefPubMedGoogle Scholar
  34. 34.
    Leah JD, Herdegen T, Bravo R. Selective expression of Jun proteins following axotomy and axonal transport block in peripheral nerves in the rat: evidence for a role in the regeneration process. Brain Res 1991;566:198–207.CrossRefPubMedGoogle Scholar
  35. 35.
    Chi SI, Levine JD, Basbaum AI. Peripheral and central contributions to the persistent expression of spinal cord foslike immunoreactivity produced by sciatic nerve transection in the rat. Brain Res 1993;617:225–237.CrossRefPubMedGoogle Scholar
  36. 36.
    Zheng JQ, Kelly TK, Chang B, Ryanzantsev S, Rajasekaran AK, Martin KC, et al. A functional role for intra-axonal protein synthesis during axonal regeneration from adult sensory neurons. J Neurosci 2001;21:9291–9303.PubMedGoogle Scholar
  37. 37.
    Willis DE, Twiss JL. The evolving roles of axonally synthesized proteins in regeneration. Curr Opin Neurobiol 2006;16:111–118.CrossRefPubMedGoogle Scholar
  38. 38.
    Bamburg JR, McGough A, Ono S. Putting a new twist on actin: ADF/cofilins modulate actin dynamics. Trends Cell Biol 1999;9:364–370.CrossRefPubMedGoogle Scholar
  39. 39.
    Giuditta A, Kaplan BB, van Minnen J, Alvarez J, Koenig E. Axonal and presynaptic protein synthesis: new insights into the biology of the neuron. Trends Neurosci 2002;25(8):400–404.CrossRefPubMedGoogle Scholar

Copyright information

© Chinese Association of the Integration of Traditional and Western Medicine and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Kah-Hui Wong
    • 1
    • 2
    Email author
  • Gowri Kanagasabapathy
    • 2
  • Murali Naidu
    • 1
    • 2
  • Pamela David
    • 1
    • 2
  • Vikineswary Sabaratnam
    • 2
    • 3
  1. 1.Department of Anatomy, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
  2. 2.Mushroom Research CentreUniversity of MalayaKuala LumpurMalaysia
  3. 3.Institute of Biological Sciences, Faculty of ScienceUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations