Skip to main content

Advertisement

Log in

Divergent immunomodulatory effects of extracts and phenolic compounds from the fern Osmunda japonica Thunb.

  • Original Article
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Objective

To study possible immunobiological potential of Osmunda japonica Thunb.

Methods

Immunomodulatory effects of ethanol extracts prepared from rhizomes of O. japonica and phenolic compounds isolated from the extracts were investigated under the in vitro conditions using the rat peritoneal cells (2×106/mL; 24 h culture). Biosynthesis of nitric oxide (NO) was assayed by Griess reagent, production of prostaglandin E2 (PGE2) and secretion of cytokines were determined by enzyme-linked immunoabsorbent assay.

Results

The extracts activated dose dependently, with the onset at 2.5–5 μmol/L concentrations, the high output NO production, and secretion of interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). Mild enhancement of NO was produced by the aldehyde-type phenolics 4-hydroxybenzaldehyde and 3,4-hydroxybenzaldehyde. In contrasts, the acetone-type phenolics 4-hydroxybenzalacetone and 3,4-hydroxybenzalacetone inhibited production of immune mediators including cytokines (TNF-α, IL-1β, IL-6), NO, and PGE2. The 3,4-hydroxybenzalacetone was more effective than 4-hydroxybenzaldehyde. The IC50s estimates ranged within the interval of 5–10 μmol/L. No signs of cytotoxicity were observed up to the 50 μmol/L concentration of the compounds.

Conclusion

Phenolic compounds contained in medicinal herb Osmunda japonica possess distinct immunomodulatory activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cai SQ, Li J, eds. Species systematization and quality evaluation of commonly used Chinese traditional drugs: North-China Edition II, 10:66. In Lou Z (ed): Beijing: Beijing Medical University Press; 1995:1236.

    Google Scholar 

  2. Woo ER, Kim HJ, Kwak JH, Lim YK, Park SK, Kim HS, et al. Anti-herpetic activity of various medicinal plant extracts. Arch Pharm Res 1997;20:58–67.

    Article  PubMed  CAS  Google Scholar 

  3. Zhao ZL, Leng CH, Wang ZT. Identification of Dryopteris crassirhizoma and the adulterant species based on cpDNA rbcL and translated amino acid sequences. Planta Med 2007;73:1230–1233.

    Article  PubMed  CAS  Google Scholar 

  4. Zhang ZH, He YF. Primary study on bacteriostatic activities of extracts from Osmunda japonica Thunb. Natural Sci E 2008;30:95–98.

    Google Scholar 

  5. Numata A, Takahashi C, Fujiki R, Kitano E, Kitajima A, Takemura T. Plant constituents biologically active to insects. VI. Antifeedants for larvae of the yellow butterfly, Eurema hecabe mandarina, in Osmunda japonica. (2). Chem Pharm Bull 1990;38:2862–2865.

    Article  PubMed  CAS  Google Scholar 

  6. Yu YM, Yang JS, Peng CZ, Caer V, Cong PZ, Zou ZM, et al. Lactones from Angiopteris caudatiformis. J Nat Prod 2009;72:921–924.

    Article  PubMed  CAS  Google Scholar 

  7. Watanabe K, Hayashi H, Mori Y. Effect of a benzylidene derivative, a novel antirheumatic agent, on IL-1 production. Pharmacol Res 1993;28:59–72.

    Article  PubMed  CAS  Google Scholar 

  8. Su BN, Jones WP, Cuendet M, Kardono LB, Ismail R, Riswan S, et al. Constituents of the stems of Macrococculus pomiferus and their inhibitory activities against cyclooxygenases-1 and -2. Phytochemistry 2004;65:2861–2866.

    Article  PubMed  CAS  Google Scholar 

  9. Lee JY, Jang YW, Kang HS, Moon H, Sim SS, Kim CJ. Anti-inflammatory action of phenolic compounds from Gastrodia elata root. Arch Pharm Res 2006;29:849–858.

    Article  PubMed  CAS  Google Scholar 

  10. Morikawa T, Ando S, Matsuda H, Kataoka S, Muraoka O, Yoshikawa M. Inhibitors of nitric oxide production from the rhizomes of Alpinia galanga: structures of new 8–9′ linked neolignans and sesquineolignan. Chem Pharm Bull 2005;53:625–630.

    Article  PubMed  CAS  Google Scholar 

  11. Hsieh YH, Kuo PM, Chien SC, Shyur LF, Wang SY. Effects of Chamaecyparis formosensis Matasumura extractives on lipopolysaccharide-induced release of nitric oxide. Phytomedicine 2007;14:675–680.

    Article  PubMed  CAS  Google Scholar 

  12. Chang ZQ, Gebru E, Lee SP, Rhee MH, Kim JC, Cheng H, et al. In vitro antioxidant and anti-inflammatory activities of protocatechualdehyde isolated from Phellinus gilvus. J Nutr Sci Vitaminol (Tokyo) 2011;57:118–122.

    Article  CAS  Google Scholar 

  13. Marletta MA, Yoon PS, Iyengar R, Leaf CD, Wishnok JS. Macrophage oxidation of L-arginine to nitrite and nitrate. Biochemistry 1988;27:8706–8711.

    Article  PubMed  CAS  Google Scholar 

  14. Zídek Z, Farghali H, Kmoníčková E.Intrinsic nitric oxide-stimulatory activity of lipoteichoic acids from different Grampositive bacteria. Nitric Oxide 2010;23:300–310.

    Article  PubMed  Google Scholar 

  15. Punzón C, Alcaide A, Fresno M. In vitro anti-inflammatory activity of Phlebodium decumanum. Modulation of tumor necrosis factor and soluble TNF receptors. Int Immunopharmacol 2003;3:1293–1299.

    Article  PubMed  Google Scholar 

  16. Jańczyk A, Garcia-Lopez MA, Fernandez-Peñas P, Alonso-Lebrero JL, Benedicto I, López-Cabrera M, et al. A Polypodium leucotomos extract inhibits solar-simulated radiation-induced TNF-alpha and iNOS expression, transcriptional activation and apoptosis. Exp Dermatol 2007;16:823–829.

    Article  PubMed  Google Scholar 

  17. Nogal-Ruiz JJ, Gómez-Barrio A, Escario JA, Martínez-Fernández AR. Modulation by Polypodium leucotomos extract of cytokine patterns in experimental trichomoniasis model. Parasite 2003;10:73–78.

    PubMed  CAS  Google Scholar 

  18. Philips N, Conte J, Chen YJ, Natrajan P, Taw M, Keller T, et al. Beneficial regulation of matrixmetalloproteinases and their inhibitors, fibrillar collagens and transforming growth factor-beta by Polypodium leucotomos, directly or in dermal fibroblasts, ultraviolet radiated fibroblasts, and melanoma cells. Arch Dermatol Res 2009;301:487–495.

    Article  PubMed  Google Scholar 

  19. Wills PJ, Asha VV. Protective mechanism of Lygodium flexuosum extract in treating and preventing carbon tetrachloride induced hepatic fibrosis in rats. Chem Biol Interact 2007;165:76–85.

    Article  PubMed  CAS  Google Scholar 

  20. Wu MJ, Weng CY, Wang L, Lian TW. Immunomodulatory mechanism of the aqueous extract of sword brake fern (Pteris ensiformis Burm.). J Ethnopharmacol 2005;98:73–81.

    Article  PubMed  CAS  Google Scholar 

  21. Yang JH, Kondratyuk TP, Marler LE, Qiu X, Choi Y, Cao H, et al. Isolation and evaluation of kaempferol glycosides from the fern Neocheiropteris palmatopedata. Phytochemistry 2010;71:641–647.

    Article  PubMed  CAS  Google Scholar 

  22. Ding AH, Nathan CF, Stuehr DJ. Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J Immunol 1988;141:2407–2412.

    PubMed  CAS  Google Scholar 

  23. Wildfeuer A, Heymer B, Schleifer KH, Haferkamp O. Investigations on the specificity of the Limulus test for the detection of endotoxin. Appl Microbiol 1974;28:867–871.

    PubMed  CAS  Google Scholar 

  24. Wilson M, Moore J, Kieser JB. Identity of limulus amoebocyte lysate-active root surface materials from periodontally involved teeth. J Clin Periodontol 1986;13:743–747.

    Article  PubMed  CAS  Google Scholar 

  25. Takemoto T, Okuyama T, Jin H, Arai T, Kawahara M, Konno C, et al. Isolation of phytoecdysones from Japanese ferns. I. Chem Pharm Bull 1973;21:2336–2338.

    Article  CAS  Google Scholar 

  26. Koyama K, Fuke F, Kimura J, Toru O. The constituents of Osmunda spp. (I). Shoyakugaku Zasshi 1978;32:126–128.

    CAS  Google Scholar 

  27. Okuyama T, Hosoyama K, Hiraga Y. The constituents of Osmunda spp. II. A new flavonol glycoside of Osmunda asiatica. Chem Pharm Bull 1978;26:3071–3074.

    Article  CAS  Google Scholar 

  28. Okuyama T, Ohta Y, Shibata S. The constituents of Osmunda spp. III. Studies on the sporophyll of Osmunda japonica. Shoyakugaku Zasshi 1979;33:185–186.

    CAS  Google Scholar 

  29. Li BW, Zhang D, Yang L, Fu MH, Fang J. Determination of polysaccharides from rhizoma of Osmunda japonica. Chin J Exp Tradit Med Formulae (Chin) 2010;16:41–43.

    Google Scholar 

  30. Li BW, Zhang D, Liu WG, Yang L. Determination of tannins in rhizoma of Osmunda japonica. Chin J Inform Tradit Chin Med (Chin) 2010;17:45–46.

    CAS  Google Scholar 

  31. Liew FY, Li Y, Millot S. Tumor necrosis factor-alpha synergizes with IFN-gamma in mediating killing of Leishmania major through the induction of nitric oxide. J Immunol 1990;145:4306–4310.

    PubMed  CAS  Google Scholar 

  32. Nathan CF, Hibbs JB. Role of nitric oxide synthesis in macrophage antimicrobial activity. Curr Opin Immunol 1991;3:65–70.

    Article  PubMed  CAS  Google Scholar 

  33. Karupiah G, Xie QW, Buller RML, Nathan C, Duarte C, MacMicking JD. Inhibition of viral replication by interferon-γ-induced nitric oxide synthase. Science 1993;261:1445–1448.

    Article  PubMed  CAS  Google Scholar 

  34. Croen KD. Evidence for an antiviral effect of nitric oxide. Inhibition of herpes simplex virus type 1 replication. J Clin Invest 1993;91:2446–2452.

    Article  PubMed  CAS  Google Scholar 

  35. James SL. Role of nitric oxide in parasitic infections. Microbiol Rev 1995;59:533–547.

    PubMed  CAS  Google Scholar 

  36. Rao CV, Indranie C, Simi B, Manning PT, Connor JR, Reddy BS. Chemopreventive properties of a selective inducible nitric oxide synthase inhibitor in colon carcinogenesis, administered alone or in combination with celecoxib, a selective cyclooxygenase-2 inhibitor. Cancer Res 2002;62:165–170.

    PubMed  CAS  Google Scholar 

  37. Murakami A, Ohigashi H. Targeting NOX, INOS and COX-2 in inflammatory cells: chemoprevention using food phytochemicals. Int J Cancer 2007;121:2357–2363.

    Article  PubMed  CAS  Google Scholar 

  38. Laszlo F, Whittle BJ, Moncada S. Time-dependent enhancement or inhibition of endotoxin-induced vascular injury in rat intestine by nitric oxide synthase inhibitors. Br J Pharmacol 1994;111:1309–1315.

    Article  PubMed  CAS  Google Scholar 

  39. Dudhgaonkar SP, Tandan SK, Kumar D, Raviprakash V, Kataria M. Influence of simultaneous inhibition of cyclooxygenase-2 and inducible nitric oxide synthase in experimental colitis in rats. Inflammopharmacology 2007;15:188–195.

    Article  PubMed  CAS  Google Scholar 

  40. Rainsford KD. Anti-inflammatory drugs in the 21st century. Subcell Biochem 2007;42:3–27.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdeněk Zídek.

Additional information

Supported by the International Science and Technology Cooperation Program of the People’s Republic of China (No. 2011DFA30870), and by the bilateral grant from the Ministry of Education, Youth and Sports of the Czech Republic (No. ME10116).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Xx., Li, Yj., Yang, L. et al. Divergent immunomodulatory effects of extracts and phenolic compounds from the fern Osmunda japonica Thunb.. Chin. J. Integr. Med. 19, 761–770 (2013). https://doi.org/10.1007/s11655-013-1460-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-013-1460-4

Keywords

Navigation