Phytochemistry, pharmacology and medicinal properties of Carthamus tinctorius L.


Carthamus tinctorius L. is commonly known as Safflower. C. tinctorius extracts and oil are important in drug development with numerous pharmacological activities in the world. This plant is cultivated mainly for its seed, which is used as edible oil. For a long time C. tinctorius has been used in traditional medicines as a purgative, analgesic, antipyretic and an antidote to poisoning. It is a useful plant in painful menstrual problems, post-partum hemorrhage and osteoporosis. C. tinctorius has recently been shown to have antioxidant, analgesic, anti-inflammatory and antidiabetic activities. Carthamin, safflower yellow are the main constituents in the flower of C. tinctorius. Carthamidin, isocarthamidin, hydroxysafflor yellow A, safflor yellow A, safflamin C and luteolin are the main constituents which are reported from this plant. Caryophyllene, p-allyltoluene, 1-acetoxytetralin and heneicosane were identified as the major components for C. tinctorius flowers essential oil. Due to the easy collection of the plant and being widespread and also remarkable biological activities, this plant has become both food and medicine in many parts of the world. This review presents comprehensive analyzed information on the botanical, chemical and pharmacological aspects of C. tinctorius.

This is a preview of subscription content, access via your institution.


  1. 1.

    Shirwaikar A, Khan S, Kamariya YH, Patel BD, Gajera FP. Medicinal plants for the management of post-menopausal osteoporosis: a review. Open Bone J 2010;2:1–13.

    Article  CAS  Google Scholar 

  2. 2.

    Bae CS, Park CH, Cho HJ, Han HJ, Kang SS, Choi SH, et al. Therapeutic effects of safflower (Carthamus tinctorius L.) seed powder on osteoporosis. Korean J Electron Microscopy 2002;32:285–290.

    Google Scholar 

  3. 3.

    Zargari A. Medicinal plants. Vol 2. Iran: Tehran University Press; 1988:619.

    Google Scholar 

  4. 4.

    Kumar SP, Kumari BDR. Factors affecting on somatic embryogenesis of safflower (Carthamus tinctorius L) at morphological and biochemical levels. World J Agri Sci 2011;7:197–205.

    Google Scholar 

  5. 5.

    Knowles PF, Ashri A. In: Smartt J, Simmonds NW, eds. Evolution of crop plants. 2nd ed. Harlow, UK: Longman; 1995:47–50.

    Google Scholar 

  6. 6.

    Weiss EA. In: Anonymous, eds. Safflower. London, UK: Longman Group Limited, Longman House; 1983:216–281.

    Google Scholar 

  7. 7.

    Wang G, Li Y. Clinical application of safflower (Carthamus tinctorius). Zhejiang Tradit Chin Med Sci J (Chin) 1985;1:42–43.

    CAS  Google Scholar 

  8. 8.

    Zhou FR, Zhao MB, Tu PF. Simultaneous determination of four nucleosides in Carthamus tinctorius L. and Safflower injection using highperformance liquid chromatography. J Chin Pharmaceut Sci (Chin) 2009;18:326–330.

    CAS  Google Scholar 

  9. 9.

    Punjanon T, Arpornsuwan T, Klinkusoom N. The pharmacological properties of safflower (Carthamus tinctorius L). Bull Health Sci Technol 2004;7:51–63.

    Google Scholar 

  10. 10.

    Madaan N, Mudgal V, Mishra S, Srivastava AK, Singh RB. Studies on biochemical role of accumulation of heavy metals in Safflower. Open Nutraceuticals J 2011;4:199–204.

    Article  CAS  Google Scholar 

  11. 11.

    Kruawan K, Kangsadalampai K. Antioxidant activity, phenolic compound contents and antimutagenic activity of some water extract of herbs. Thai J Pharm Sci 2006;30:28–35.

    CAS  Google Scholar 

  12. 12.

    Jun MS, Ha YM, Kim HS, Jang HJ, Kim YM, Lee YS, et al. Antiinflammatory action of methanol extract of Carthamus tinctorius involves in heme oxygenase-1 induction. J Ethnopharmacol 2011;133:524–530.

    PubMed  Article  Google Scholar 

  13. 13.

    Almeida RN, Navarro DS, Barbosa-Filho JM. Plants with central analgesic activity. Phytomed 2001;8:310–322.

    Article  CAS  Google Scholar 

  14. 14.

    Kasahara Y, Kumaki K, Sato T, Katagiri S. Pharmacological studies on flower petals of Carthamus tinctorius central actions and anti-inflammation. Shoyakugaku Zasshi 1989;43:331–338.

    Google Scholar 

  15. 15.

    Hiramatsu M, Takahashi T, Komatsu T, Kido T, Kasahara Y. Antioxidant and neuroprotective activities of mogami-benibana (Safflower, Carthamus tinctorius Linne). Neurochem Res 2009;34:795–805.

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Sellami IH, Ben Salah H, Kchouk ME, Marzouk B. Variations in phytosterol composition during the ripening of Tunisian safflower (Carthamus tinctorius L.) seeds. Pak J Bio Sci 2007;10:3829–3834.

    Article  Google Scholar 

  17. 17.

    Kim SK, Cha JY, Jeong SJ, Chung CH, Choi YR, Cho YS. Properties of the chemical composition of safflower (Carthamus tinctorius L.) sprout. Korean J Life Sci 2000;10:68–73.

    Google Scholar 

  18. 18.

    Zhang HL, Nagatsu A, Watanabe T, Sakakibara J, Okuyama H. Antioxidative compounds isolated from safflower (Carthamus tinctorius L.) oil cake. Chem Pharm Bull 1997;45:1910–1914.

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Park JB. Serotomide and safflomide modulate forskolin stimulated cAMP formation via 5-HT1receptor. Phytomed 2008;15:1093–1098.

    Article  CAS  Google Scholar 

  20. 20.

    Zhao G, Qin GW, Gai Y, Guo LH. Structural identification of a new tri-p-coumaroylspermidine with serotonin transporter inhibition from safflower. Chem Pharm Bull 2010;58:950–952.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Akihisa T, Yasukaw K, Oinuma H, Kasahara Y, Yamanouchi S, Takido M, et al. Triterpene alcohols from the flowers of compositae and their anti-inflammatory effects. Phytochem 1996;43:1255–1260.

    Article  CAS  Google Scholar 

  22. 22.

    Onodera J, Obara H, Osone M. The structure of Safflomin-A a component of safflower yellow. Chem Lett 1981;3:433–436.

    Article  Google Scholar 

  23. 23.

    Jin Y, Xiao YS, Zhang FF. Systematic screening and characterization of flavonoid glycosides in Carthamus tinctorius L. by liquid chromatography/UV diode-array detection/electrospray ionization tandem mass spectrometry. J Pharm Biomed Anal 2008;46:418–430.

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Jiang TF, Lv ZH, Wang YH. Separation and determination of chalcones from Carthamus tinctorius L. and its medicinal preparation by capillary zone electrophoresis. J Sep Sci 2005;28:1244–1247.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Zhou YZ, Ma HY, Chen H. New acetylenic glucoside from Carthamus tinctorius. Chem Pharm Bull 2006;54:1455–1456.

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Xiao PG, Liu CX. Pharmacology, pharmacokinetics and toxicology of Chinese traditional medicine for stroke therapy. Asian J Drug Metabol Pharmacokin 2005;5:83–124.

    Google Scholar 

  27. 27.

    Lee JY, Chang EJ, Kim HJ, Park JH, Choi SW. Antioxidative flavonoids from leaves of Carthamus tinctorius. Arch Pharm Res 2002;25:313–319.

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Meselhy MR, Kadota S, Momose Y, Hatakeyama N, Kusai A, Hattori M, et al. Two new quinochalcone yellow pigments from Carthamus tictorius and calcium antagonistic activity of tictormine. Chem Pharm Bull 1993;41:1796–1802.

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Huang JL, Fu ST, Jiang YY, Cao YB, Guo ML, Wang Y, et al. Protective effects of Nicotiflorin on reducing memory dysfunction, energy metabolism failure and oxidative stress in multi-infarct dementia model rats. Pharm Biochem Behav 2007;86:741–748.

    Article  CAS  Google Scholar 

  30. 30.

    Akihisa T, Nozaki A, Inoue Y, Yasukawa K, Kasahara Y, Motohashi S, et al. Alkane diols from flower petals of Carthamus tinctorius. Phytochem 1997;45:725–728.

    Article  CAS  Google Scholar 

  31. 31.

    Shao JF, Wang YB, Chen Q, Liu ZQ, Liu Q, Cai WG, et al. A daily variation in essential oil composition of flower of different accessions from Carthamus tinctorius L. in Sichuan province of China. J Med Plant Res 2011;5:3042–3051.

    Google Scholar 

  32. 32.

    Hyun TK, Kim JS. The pharmacology and clinical properties of Kalopanax pictus. J Med Plants Res 2009;3:613–620.

    CAS  Google Scholar 

  33. 33.

    Shokrzadeh M, Saeedi Sarvari SS. Chemistry, pharmacology and clinical properties of Sambucus ebulus: a review. J Med Plants Res 2009;4:95–103.

    Google Scholar 

  34. 34.

    Rhee MH, Park HJ, Cho JY. Salicornia herbaceae: botanical, chemical and pharmacological review of halophyte marsh plant. J Med Plants Res 2009;3:548–555.

    CAS  Google Scholar 

  35. 35.

    Lundberg IE. Clinical symptoms in patients with myositisan acquired metabolic myopathy idiopathy inflammation myopathies: why do the muscles become weak? Curr Opin Rheumatol 2003;15:675–678.

    PubMed  Article  Google Scholar 

  36. 36.

    Walsh LJ. Mast cells and oral inflammation. Crit Rev Oral Biol Med 2003;14:188–198.

    PubMed  Article  Google Scholar 

  37. 37.

    Huang ZL, Yu ML, Qu SK, Shan ML, Song CQ. Studies on the immuno-activity of the polysaccharide from safflower (Carthamus tinectorius). Chin Trad Herb Drugs 1984;15:213–216.

    CAS  Google Scholar 

  38. 38.

    Chen CY, Peng WH, Tsai KD, Hsu SL. Luteolin suppresses inflammation-associated gene expression by blocking NF-κB and AP-1 activation pathway in mouse alveolar macrophages. Life Sci 2007;81:1602–1614.

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    López-Lázaro M. Distribution and biological activities of the flavonoid luteolin. Mini Rev Med Chem 2009;9:31–59.

    PubMed  Article  Google Scholar 

  40. 40.

    Mohsin A, Shah AH, Al-Yahya MA, Tariq M, Tanira MOM, Ageel AM. Analgesic, antipyretic activity and phytochemical screening of some plants used in traditional Arab system of medicine. Fitoterapia 1989;60:174–177.

    Google Scholar 

  41. 41.

    Zhu HB, Zhang L, Wang ZH, Tian JW, Fu FH, Liu K, et al. Therapeutic effects of hydroxysafflor yellow A on focal cerebral ischemic injury in rats and its primary mechanisms. J Asian Nat Prod Res 2005;7:607–613.

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Li HX, Han SY, Wang XW, Ma X, Zhang K, Wang L, et al. Effects of the carthamins yellow from Carthamus tinctorius L. on hemorheological disorders of blood stasis in rats. Food Chem Toxicol 2009;47:1797–1802.

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Halliwell B, Gutteridge JMC. Role of free radicals and catalytic metal ions in human disease: an overview. Method Enzymol 1995;186:1–85.

    Article  Google Scholar 

  44. 44.

    Wiseman SA, Balentine DA, Frei B. Antioxidants in tea. Crit Rev Food Sci Nutr 1997;37:705–718.

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Mates JM, Perez-Gomez C, Nunez de Castro I. Antioxidant enzymes and human diseases. Clin Biochem 1999;32:595–603.

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    Aruoma OI. Methodological considerations for characterizing potential antioxidant actions of bioactive components in plant foods. Mutat Res 2003;523–524.

  47. 47.

    Hemati A, Azarnia M, Angaji AH. Medicinal effects of Heracleum persicum (Golpar). Middle-East J Sci Res 2010;5:174–176.

    Google Scholar 

  48. 48.

    Hogg N. Free radicals in disease. Seminars Reproduct Endocrinol 1998;16:241–248.

    Article  CAS  Google Scholar 

  49. 49.

    Cho JY, Prak SC, Kim TW, Kim KS, Song JC, Kim SK, et al. Radical scavenging and anti-inflammatory activity of extracts from Opuntia humifusa. Raf J Pharm Pharmacol 2006;58:113–119.

    Article  CAS  Google Scholar 

  50. 50.

    Cai Y, Luo Q, Sun M, Corke H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci 2003;74:2157–2184.

    Article  Google Scholar 

  51. 51.

    Calomme M, Pieters L, Vlietinck A, Berghe DV. Inhibition of bacterial mutagenesis by Citrus flavonoids. Planta Med 1996;62:222–226.

    PubMed  Article  CAS  Google Scholar 

  52. 52.

    Koyama N, Kuribayashi K, Seki T, Kobayashi K, Furuhata Y, Suzuki, et al. Serotonin derivatives, major safflower (Carthamus tinctorius L.) seed antioxidants, inhibit low-density lipoprotein (LDL) oxidation and atherosclerosis in apolipoprotein E-deficient mice. J Agric Food Chem 2006;54:4970–4976.

    PubMed  Article  CAS  Google Scholar 

  53. 53.

    Alam MR, Kim SM, Lee JI. Effects of Safflower seed oil in osteoporosis induced-ovariectomized rats. Am J Chin Med 2006;34:601–612.

    PubMed  Article  CAS  Google Scholar 

  54. 54.

    Jang HO, Park YS, Lee JH. Effect of extracts from safflower seeds on osteoblast differentiation and intracellular calcium ion concentration in MC3T3-E1 cells. Nat Prod Res 2007;21:787–797.

    PubMed  Article  CAS  Google Scholar 

  55. 55.

    Kim HJ, Bae YC, Park RW. Bone-protecting effect of safflower seeds in ovariectomized rats. Calcif Tissue Int 2002;71:88–94.

    PubMed  Article  CAS  Google Scholar 

  56. 56.

    Yuk TH, Kang JH, Lee SR, Yuk SW, Lee KG, Song BY, et al. Inhibitory effect of Carthamus tinctorius L. seed extracts on bone resorption mediated by tyrosine kinase, COX-2 (cyclooxygenase) and PG (prostaglandin) E2. Am J Chin Med 2002;30:95–108.

    PubMed  Article  Google Scholar 

  57. 57.

    Paramesha M, Ramesh CK, Krishna V, Ravi Kumar YS, Parvathi KMM. Hepatoprotective and in vitro antioxidant effect of Carthamus tinctorius L, var Annigeri-2-, an oil-yielding crop, against CCl4 -induced liver injury in rats. Pharmacogn Mag 2011;7(28):289–297.

    PubMed  Article  CAS  Google Scholar 

  58. 58.

    Moon KD, Back SS, Kim JH, Jeon SM, Lee MK, Choi MS. Safflower seed extract lowers plasma and hepatic lipids in rats fed high-cholesterol diet. Nutr Res 2001;21:895–904.

    Article  CAS  Google Scholar 

  59. 59.

    Arpornsuwan T, Changsr K, Roytrakul S, Punjanon T. The effects of the extracts from Carthamus tinctorius L. on gene expression related to cholesterol metabolism in rats. Songklanakarin J Sci Technol 2010;32:129–136.

    CAS  Google Scholar 

  60. 60.

    Asgary S, Rahimi P, Mahzouni P, Madani H. Antidiabetic effects of hydroalcoholic extract of Carthamus tinctoriuss L. in alloxaninduced diabetic rats. J Res Med Sci 2012;17:386–392.

    PubMed  CAS  Google Scholar 

  61. 61.

    Takahashi T, Miyazawa M. Potent α-glucosidase inhibitors from safflower (Carthamus tinctorius L.) seed. Phytother Res 2012;26:722–726.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Jinous Asgarpanah.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Asgarpanah, J., Kazemivash, N. Phytochemistry, pharmacology and medicinal properties of Carthamus tinctorius L.. Chin. J. Integr. Med. 19, 153–159 (2013).

Download citation


  • Carthamus tinctorius
  • Asteraceae
  • Safflower
  • phytochemistry
  • pharmacology