Skip to main content
Log in

Neutroprotective efficacy of sodium tanshinone B on hippocampus neuron in a rat model of focal cerebral ischemia

  • Original Article
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Objective

To investigate the protective effects of sodium tanshinone B (STB) on brain damage following focal ischemia-reperfusion (I/R) injury through interfering with N-methyl-D-aspartic acid receptor (NMDAR) and excitatory and inhibitory amino acids, and evaluate the potential mechanisms of the neuroprotective activity of STB.

Methods

Transient forebrain ischemia was induced by middle cerebral artery occlusion (MCAO). The rats were randomized into a sham operated group, a model group (I/R) and three STB different dose groups. Rats were pretreated with STB at the doses of 4, 8, 16 mg/kg (STB1, STB2, STB3) for 3 days before MCAO. The expression of NMDAR1 was detected by immunohistochemistry and Western blotting. The concentrations of glutamate and γ-aminobutyric acid (GABA) were analyzed using high performance liquid chromatography.

Results

STB treatment reduced neurological defect scores, cerebral infarction volume and brain water content. The levels of NMDAR1 were significantly higher in the l/R and STB1 groups than that of the sham and the STB3 groups (P<0.01). Optical density of NMDAR1 was significantly increased in cornu ammonis (CA)1 region of the l/R group (P<0.05). STB treatment reduced NMDAR1 optical density in the CA1 region (P<0.01). The levels of glutamate were significantly lower in the hippocampus in the STB3 group than that of the l/R, STB1 and STB2 groups (P<0.01).

Conclusion

Preconditioning with STB appears to be a simple and promising strategy to reduce or even prevent cerebral l/R injury and has potential for future clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ban JY, Cho SO, Choi SH, Ju HS, Kim JY, Bae K, et al. Neuroprotective effect of Smilacis chinae rhizome on NMDA-induced neurotoxicity in vitro and focal cerebral ischemia in vivo. J Pharmacol Sci 2008;106:68–77.

    Article  PubMed  CAS  Google Scholar 

  • Arundine M, Tymianski M. Molecular mechanisms of glutamate-dependent neurodegeneration in ischemia and traumatic brain injury. Cell Mol Life Sci 2004;61:657–668.

    Article  PubMed  CAS  Google Scholar 

  • Gassen M, Lamensdorf I, Armony T, Finberg JP, Youdim MB. Attenuation of methamphetamine induced dopaminergic neurotoxicity by flupirtine: microdialysis study on dopamine release and free radical generation. J Neurol Transm 2003;110:171–182.

    Article  CAS  Google Scholar 

  • Hou ST, MacManus JP. Molecular mechanisms of cerebral ischemiainduced neuronal death. Int Rev Cytol 2002;221:93–148.

    Article  PubMed  CAS  Google Scholar 

  • Bano D, Young KW, Guerin CJ, Lefeuvre R, Rothwell NJ, Naldini L, et al. Cleavage of the plasma membrane Na+/Ca2+ exchanger in excitotoxicity. Cell 2005;120:275–285.

    Article  PubMed  CAS  Google Scholar 

  • Bano D, Nicotera P. Ca2+ signals and neuronal death in brain ischemia. Stroke 2007;38(Suppl 2):674–676.

    Article  PubMed  CAS  Google Scholar 

  • Lo EH, Moskowitz MA, Jacobs TP. Exciting, radical, suicidal: how brain cells die after stroke. Stroke 2005;36:189–192.

    Article  PubMed  Google Scholar 

  • Sarraf-Yazdi S, Sheng H, Miura Y, McFarlane C, Dexler F, Pearlstein R, et al. Relative neuroprotective effects of dizocilpine and isoflurane during focal cerebral ischemia in the rat. Anesth Analg 1998;87:72–78.

    PubMed  CAS  Google Scholar 

  • Kemp JA, McKernan RM. NMDA receptor pathways as drug targets. Nat Neurosci 2002;5(suppl):1039–1042.

    Article  PubMed  CAS  Google Scholar 

  • Birmingham K. Future of neuropratedive drugs in doubt. Nat Med 2002;8:5.

    PubMed  CAS  Google Scholar 

  • Ikonomidou C, Turski L. Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet Neurol 2002;1:383–386.

    Article  PubMed  CAS  Google Scholar 

  • Huang YF, Liu ML, Dong MQ, Yang WC, Zhang B, Luan LL, et al. Effects of sodium tanshinone II A sulphonate on hypoxic pulmonary hypertension in rats in vivo and on Kv2.1 expression in pulmonary artery smooth muscle cells in vitro. J Ethnopharmacol 2009;125:436–443.

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Morton J, Miedzyblocki M, Lee TF, Bigam DL, Fok TF, et al. Sodium tanshinone II A sulfonate increased intestinal hemodynamics without systemic circulatory changes in healthy newborn piglets. Am J Physiol Heart Circ Physiol 2009;297:H1217–H1224.

    Article  PubMed  CAS  Google Scholar 

  • Liu SX, Li YM, Fang WR. Protective effect of sodium tanshinone B on focal cerebral ischemia-reperfusion injury in rats. J China Pharmaceut Univ (Chin) 2008;39:338–342.

    CAS  Google Scholar 

  • Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 1989;20:84–91.

    Article  PubMed  CAS  Google Scholar 

  • Kawamura S, Yasui N, Shirasawa M, Fukasawa H. Rat middle cerebral artery occlusion using an intraluminal thread technique. Acta Neurochir 1991;109:126–132.

    Article  CAS  Google Scholar 

  • Bederson JB, Pitts LH, Germano SM, Nishimura MC, Davis RL, Bartkowski HM. Evaluation of 2,3,5-triphenyltetrazolium chloride as a stain for detection and quantification of experimental cerebral infarction in rats. Stroke 1986;17:1304–1308.

    Article  PubMed  CAS  Google Scholar 

  • Swanson RA, Morton MT, Tsao-Wu G, Savalos RA, Davidson C, Sharp FR. A semiautomated method for measuring brain infarct volume. J J Cereb Blood Flow Metab 1990;10:290–293

    Article  CAS  Google Scholar 

  • Dumkan A, Tatlisumak T. Acute ischemic stroke: overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia. Pharmacol Biochem Behav 2007;87:179–197.

    Article  Google Scholar 

  • Ploughman M, Windle V, MacLellan CL, White N, Doré JJ, Corbett D. Brain-derived neurotrophic factor contributes to recovery of skilled reaching after focal ischemia in rats. Stroke 2009;40:1490–1495.

    Article  PubMed  CAS  Google Scholar 

  • Dromerick AW, Edwards DF, Hahn M. Does the application of constraint-induced movement therapy during acute rehabilitation reduce arm impairment after ischemic stroke? Stroke 2000;31:2984–2988.

    Article  PubMed  CAS  Google Scholar 

  • Siironen J, Juvela S, Kanarek K, Vilkki J, Hernesniemi J, Lappalainen J. The met allele of the BDNF Val66met polymorphism predicts poor outcome among survivors of aneurysmal subarachnoid hemorrhage. Stroke 2007;38:2858–2860.

    Article  PubMed  CAS  Google Scholar 

  • Myers WA, Churchill JD, Muja N, Garraghty PE. Role of NMDA receptors in adult primate cortical somatosensory plasticity. J Comp Neurol 2000;418:373–382.

    Article  PubMed  CAS  Google Scholar 

  • Doble A. The role of excitotoxicity in neurodegenerative disease: implications for therapy. Pharmacol Ther 1999;81:163–221.

    Article  PubMed  CAS  Google Scholar 

  • Rossi OJ, Oshima T, Attwell D. Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature 2000;403:316–321.

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Lu TJ, Chen XJ, Zhou Y, Chen Q, Feng XY, et al. Differential roles of NMDA receptor subtypes in ischemic neuronal cell death and ischemic tolerance. Stroke 2008;39:3042–3048.

    Article  PubMed  CAS  Google Scholar 

  • Kunkle DD, Hendrickson AE, Wu JY, Schwartzkroin PA. Glutamic acid decarboxylase (GAD) immunocytochemistry of developing rabbit hippocampus. J Neurosci 1986;6:541–552.

    Google Scholar 

  • Somogyi P, Hodgson AJ, Smith AD, Nunzi MG, Gorio A, Wu JV. Glutamate decarboxylase immunoreactivity in the hippocampus of the cat: distribution of immunoreactive synaptic terminals with special reference to the axon initial segment of pyramidal neurons. J Neurosci 1983;3:1450–1468.

    PubMed  CAS  Google Scholar 

  • Kirino H. Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 1982;239:57–69.

    Article  PubMed  CAS  Google Scholar 

  • Choi DW, Rothman SM. The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu Rev Neurosci 1990;13:171–182.

    Article  PubMed  CAS  Google Scholar 

  • Peruche B, Krieglstein J. Mechanisms of drug actions against neuronal damage caused by ischemia: an overview. Prog Neuropsychopharmacol Biol Psychiat 1993;17:21–70.

    Article  CAS  Google Scholar 

  • Takahashi K, Ouyang X, Komatsu K, Nakamura N, Hattori M, Baba A, et al. Sodium tanshinone II A sulfonate derived from Danshen (Safwa miltiorrhiza) attenuates hypertrophy induced by angiotensin II in cultured neonatal rat cardiac cells. Biochem Pharmacol 2002;64:745–749.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Cai  (蔡 青).

Additional information

Supported by Science Development Foundation of Tianjin Institute of Education (No. 20070301) and Tianjin Natural Science Foundation of China (No. 11JCYBJC13400)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, Q., Wang, Hw., Hua, Sy. et al. Neutroprotective efficacy of sodium tanshinone B on hippocampus neuron in a rat model of focal cerebral ischemia. Chin. J. Integr. Med. 18, 837–845 (2012). https://doi.org/10.1007/s11655-012-1266-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-012-1266-9

Keywords

Navigation