Advertisement

Chinese Journal of Integrative Medicine

, Volume 17, Issue 3, pp 177–186 | Cite as

The mechanistic studies of acupuncture and moxibustion in Taiwan

  • Jaung-Geng LinEmail author
  • Yi-Hung Chen
Feature Article

Abstract

Traditional Chinese acupuncture has a history of over 2500 years. It is effective in the treatment of many conditions with few side effects. The best known mechanism is via endogenous opiates and their receptors. In addition to opioids, researchers have focused on the role of central monoamimergic systems. Acupuncture therapy is used not only to relieve pain but also to treat various medical conditions in traditional Chinese medicine (TCM). Some experiments have revealed a relationship between acupuncture and the autonomic nervous system (ANS). Besides, electroacupuncture (EA) can modulate the imbalance between innate and acquired immune systems. This review is focusing on the mechanistic studies of acupuncture that my colleagues and I have performed in Taiwan in recent years. We found that EA analgesia was closely related to not only the serotonergic neurons but also the adrenergic neurons in the central nervous system. The electrophysiological recordings suggested the involvement of the cerebral cortex in acupuncture. Local somatothermal stimulation inhibited the motility of sphincter of Oddi and internal anal sphincter through nitrergic neural release of nitric oxide. Mild local heat stress upregulated hepatic gene expression of heat shock protein 70 and protected the liver from subsequent ischemia-reperfusion injury. These studies supplement the knowledge of the mechanism of acupuncture.

Keywords

acupuncture moxibustion mechanism Taiwan 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wu JN. A short history of acupuncture. J Altern Complement Med 1996;2:19–21.PubMedCrossRefGoogle Scholar
  2. 2.
    Acupuncture: Review and Analysis of Reports on Controlled Clinical Trials; 2003.Google Scholar
  3. 3.
    Lin JG, Chen WL. Acupuncture analgesia: a review of its mechanisms of actions. Am J Chin Med 2008;36:635–645.PubMedCrossRefGoogle Scholar
  4. 4.
    Wang G, Jiang N, He Z. Effects of scalp acupuncture on plasma ET-1, MDA and NO contents in the patient of cerebral infarction. Chin Acupunct Moxibust (Chin) 2001;21:241–242.Google Scholar
  5. 5.
    Liu JH, Yan J, Yi SX, Chang XR, Lin YP, Hu JM. Effects of electroacupuncture on gastric myoelectric activity and substance P in the dorsal vagal complex of rats. Neurosci Lett 2004;356:99–102.PubMedCrossRefGoogle Scholar
  6. 6.
    Middlekauff HR, Shah JB, Yu JL, Hui K. Acupuncture effects on autonomic responses to cold pressor and handgrip exercise in healthy humans. Clin Auton Res 2004;14:113–118.PubMedCrossRefGoogle Scholar
  7. 7.
    Sun HL, Li XM. Clinical study on treatment of cerebral apoplexy with penetration needling of scalp acupoints. Chin Acupunct Moxibust (Chin) 2001;21:275–278. Chin Pharm J 1989;41:123–125.Google Scholar
  8. 8.
    Mayer DJ, Price DD, Rafii A. Antagonism of acupuncture analgesia in man by the narcotic antagonist naloxone. Brain Res 1977;121:368–372.PubMedCrossRefGoogle Scholar
  9. 9.
    Pomeranz B, Chiu D. Naloxone blockade of acupuncture analgesia: endorphin implicated. Life Sci 1976;19:1757–1762.PubMedCrossRefGoogle Scholar
  10. 10.
    Kiser RS, Khatami MJ, Gatchel RJ, Huang XY, Bhatia K, Altshuler KZ. Acupuncture relief of chronic pain syndrome correlates with increased plasma met-enkephalin concentrations. Lancet 1983;2:1394–1396.PubMedCrossRefGoogle Scholar
  11. 11.
    Pert A, Dionne R, Ng L, Bragin E, Moody TW, Pert CB. Alterations in rat central nervous system endorphins following transauricular electroacupuncture. Brain Res 1981;224:83–93.PubMedCrossRefGoogle Scholar
  12. 12.
    Clement-Jones V, Tomlin S, Rees L, McLoughlin L, Besser GM, Wen HL. Increased [beta]-endorphin but not met-enkephalin levels in human cerabrospinal fluid after acupuncture for recurrent pain. Lancet 1980;316:946–949.CrossRefGoogle Scholar
  13. 13.
    Cheng R, Pomeranz B, Yu G. Dexamethasone partially reduces and 2% saline-treatment abolished electroacupuncture analgesia: These findings implicate pituitary endorphins. Life Sci 1979;24:1481–1485.PubMedCrossRefGoogle Scholar
  14. 14.
    Chang FC, Tsai HY, Yu MC, Yi PL, Lin JG. The central serotonergic system mediates the analgesic effect of electroacupuncture on Zusanli (ST36) acupoints. J Biomed Sci 2004;11:179–185.PubMedGoogle Scholar
  15. 15.
    Tsai HY, Chen YL, Lin JG. Effect of electroacupuncture analgesia on serotoninergic neurons in rat central nervous system. Chin Pharmacol J 1989;52:123–126.Google Scholar
  16. 16.
    Tracey KJ. The inflammatory reflex. Nature 2002;420:853–859.PubMedCrossRefGoogle Scholar
  17. 17.
    Sekido R, Ishimaru K, Sakita M. Differences of electroacupuncture-induced analgesic effect in normal and inflammatory conditions in rats. Am J Chin Med 2003;31:955–965.PubMedCrossRefGoogle Scholar
  18. 18.
    Zhang SP, Zhang JS, Yung KK, Zhang HQ. Non-opioiddependent anti-inflammatory effects of low frequency electroacupuncture. Brain Res Bull 2004;62:327–334.PubMedCrossRefGoogle Scholar
  19. 19.
    Chiu JH, Chung MS, Cheng HC, Yeh TC, Hsieh JC, Chang CY, et al. Different central manifestations in response to electroacupuncture at analgesic and nonanalgesic acupoints in rats: a manganese-enhanced functional magnetic resonance imaging study. Can J Vet Res 2003;67:94–101.PubMedGoogle Scholar
  20. 20.
    Mori H, Nishijo K, Kawamura H, Abo T. Unique immunomodulation by electro-acupuncture in humans possibly via stimulation of the autonomic nervous system. Neurosci Lett 2002;320:21–24.PubMedCrossRefGoogle Scholar
  21. 21.
    Melzack R, Wall PD. Pain mechanisms: a new theory. Science 1965;150:971–979.PubMedCrossRefGoogle Scholar
  22. 22.
    Lin JG, Chen XH, Han JS. Antinociception produced by 2 and 5 KHz peripheral stimulation in the rat. Int J Neurosci 1992;64:15–22.PubMedCrossRefGoogle Scholar
  23. 23.
    Tsai HY, Chen YF, Lin JG. Effect of electroacupuncture on the serotonergic neurons in rat central nervous system. Chin Pharm J 1989;41:123–125.Google Scholar
  24. 24.
    Kuo CC. Studies of actionmechanisms of electroacupuncture in different frequencies on spinal serotonergic and opioid receptors. Taichung, Taipei: China Medical University, Master thesis; 1995.Google Scholar
  25. 25.
    Yu MC. Studies of action mechanisms in different frequencies of EAc analgesia on central monoaminergic and opioid Receptors. Taichung, Taiwan: China Medical University, Master thesis; 1995.Google Scholar
  26. 26.
    Lin JG, Hao T, Chen XH, Han JS. Intermittent-alternating mode of administering electroacupuncture stimulation postpones the development of electroacupuncture tolerance. Am J Acupunct 1993;21:51–57.Google Scholar
  27. 27.
    Neshige R, Luders H. Identification of a negative bitemporal component (N300) of the event-related potentials demonstrated by noncephalic recordings. Neurology 1988;38:1803–1805.PubMedGoogle Scholar
  28. 28.
    Tarkka IM, Stokic DS, Basile LF, Papanicolaou AC. Electric source localization of the auditory P300 agrees with magnetic source localization. Electroencephalogr Clin Neurophysiol 1995;96:538–545.PubMedCrossRefGoogle Scholar
  29. 29.
    Tarkka IM, Micheloyannis S, Stokic DS. Generators for human P300 elicited by somatosensory stimuli using multiple dipole source analysis. Neuroscience 1996;75:275–287.PubMedCrossRefGoogle Scholar
  30. 30.
    Neshige R, Luders H. Recording of event-related potentials (P300) from human cortex. J Clin Neurophysiol 1992;9:294–298.PubMedCrossRefGoogle Scholar
  31. 31.
    Goodin DS, Aminoff MJ. Evaluation of dementia by eventrelated potentials. J Clin Neurophysiol 1992;9:521–525.PubMedCrossRefGoogle Scholar
  32. 32.
    Picton TW. The P300 wave of the human event-related potential. J Clin Neurophysiol 1992;9:456–479.PubMedCrossRefGoogle Scholar
  33. 33.
    Polich J, Squire LR. P300 from amnesic patients with bilateral hippocampal lesions. Electroencephalogr Clin Neurophysiol 1993;86:408–417.PubMedCrossRefGoogle Scholar
  34. 34.
    Polich J, Ladish C, Bloom FE. P300 assessment of early Alzheimer’s disease. Electroencephalogr Clin Neurophysiol 1990;77:179–189.PubMedCrossRefGoogle Scholar
  35. 35.
    Faux SF, McCarley RW, Nestor PG, Shenton ME, Pollak SD, Penhune V, et al. P300 topographic asymmetries are present in unmedicated schizophrenics. Electroencephalogr Clin Neurophysiol 1993;88:32–41.PubMedCrossRefGoogle Scholar
  36. 36.
    Gil R, Zai L, Neau JP, Jonveaux T, Agbo C, Rosolacci T, et al. Event-related auditory evoked potentials and multiple sclerosis. Electroencephalogr Clin Neurophysiol 1993;88:182–187.PubMedCrossRefGoogle Scholar
  37. 37.
    Onofrj M, Curatola L, Malatesta G, Colamartino P, Bazzano S, Fulgente T, et al. Delayed P3 event-related potentials (ERPs) in thalamic hemorrhage. Electroencephalogr Clin Neurophysiol 1992;83:52–61.PubMedCrossRefGoogle Scholar
  38. 38.
    Hsieh CL, Li TC, Lin CY, Tang NY, Chang QY, Lin JG. Cerebral cortex participation in the physiological mechanisms of acupuncture stimulation: a study by auditory endogenous potentials (P300). Am J Chin Med 1998;26:265–274.PubMedCrossRefGoogle Scholar
  39. 39.
    Hsieh CL. Modulation of cerebral cortex in acupuncture stimulation: a study using sympathetic skin response and somatosensory evoked potentials. Am J Chin Med 1998;26:1–11.PubMedCrossRefGoogle Scholar
  40. 40.
    Kimura J, Powers JM, Van Allen MW. Reflex response of orbicularis oculi muscle to supraorbital nerve stimulation. Study in normal subjects and in peripheral facial paresis. Arch Neurol 1969;21:193–199.PubMedGoogle Scholar
  41. 41.
    Shahani B. The human blink reflex. J Neurol Neurosurg Psychiatry 1970;33:792–800.PubMedCrossRefGoogle Scholar
  42. 42.
    Shahani BT, Young RR. Human orbicularis oculi reflexes. Neurology 1972;22:149–154.PubMedGoogle Scholar
  43. 43.
    Hiraoka M, Shimamura M. Neural mechanisms of the corneal blinking reflex in cats. Brain Res 1977;125:265–275.PubMedCrossRefGoogle Scholar
  44. 44.
    Trontelj MA, Trontelj JV. Reflex arc of the first component of the human blink reflex: a single motoneurone study. J Neurol Neurosurg Psychiatry 1978;41:538–547.PubMedCrossRefGoogle Scholar
  45. 45.
    Dengler R, Wombacher T, Schodel M, Struppler A. Changes in the recruitment pattern of single motor units in the blink reflex of patients with parkinsonism and hemiplegia. Electroencephalogr Clin Neurophysiol 1985;61:16–22.PubMedCrossRefGoogle Scholar
  46. 46.
    Chia LG, Shen WC. Wallenberg’s lateral medullary syndrome with loss of pain and temperature sensation on the contralateral face: clinical, MRI and electrophysiological studies. J Neurol 1993;240:462–467.PubMedCrossRefGoogle Scholar
  47. 47.
    Messina C, Di Rosa AE, Tomasello F. Habituation of blink reflexes in parkinsonian patients under levodopa and amantadine treatment. J Neurol Sci 1972;17:141–148.PubMedCrossRefGoogle Scholar
  48. 48.
    Karson CN. Spontaneous eye-blink rates and dopaminergic systems. Brain 1983;106 (Pt 3):643–653.PubMedCrossRefGoogle Scholar
  49. 49.
    Garcia HA, Fisher MA, Gilai A. H reflex analysis of segmental reflex excitability in flexor and extensor muscles. Neurology 1979;29:984–991.PubMedGoogle Scholar
  50. 50.
    Sica RE, McComas AJ, Upton AR. Impaired potentiation of H-reflexes in patients with upper motoneurone lesions. J Neurol Neurosurg Psychiatry 1971;34:712–717.PubMedCrossRefGoogle Scholar
  51. 51.
    Taborikova H, Sax DS. Motoneurone pool and the H-reflex. J Neurol Neurosurg Psychiatry 1968;31:354–361.PubMedCrossRefGoogle Scholar
  52. 52.
    Trontelj JV. A study of the H-reflex by single fibre EMG. J Neurol Neurosurg Psychiatry 1973;36:951–959.PubMedCrossRefGoogle Scholar
  53. 53.
    Delwaide PJ, Crenna P, Fleron MH. Cutaneous nerve stimulation and motoneuronal excitability: I, soleus and tibialis anterior excitability after ipsilateral and contralateral sural nerve stimulation. J Neurol Neurosurg Psychiatry 1981;44:699–707.PubMedCrossRefGoogle Scholar
  54. 54.
    Mazzini L, Balzarini C, Gareri F, Brigatti M. H-reflex changes in the course of amyotrophic lateral sclerosis. Electroencephalogr Clin Neurophysiol 1997;104:411–417.PubMedCrossRefGoogle Scholar
  55. 55.
    Hsieh CL. The physiological mechanisms of 2 Hz electroacupuncture: a study using blink and H reflex. Am J Chin Med 2002;30:369–378.PubMedCrossRefGoogle Scholar
  56. 56.
    Chang QY, Lin JG, Hsieh CL. Effect of manual acupuncture and transcutaneous electrical nerve stimulation on the H-reflex. Acupunct Electrother Res 2001;26:239–251.PubMedGoogle Scholar
  57. 57.
    Liu ZC. Regulatory effects of acupuncture and moxibustion on simple obese complicated with hypertension. Chin J Integr Tradit West Med (Chin) 1990;10:522–525, 515.Google Scholar
  58. 58.
    Plummer JP. Acupuncture and homeostasis: physiological, physical (postural) and psychological. Am J Chin Med 1981;9:1–14.PubMedCrossRefGoogle Scholar
  59. 59.
    Chang HT. Roles of acupuncture in medicine. Am J Chin Med 1982;10:1–4.PubMedCrossRefGoogle Scholar
  60. 60.
    Lin JG, Ho SJ, Lin JC. Effect of acupuncture at Neiguan or Zusanli on cardiopulmonary function: a pilot study. J Chin Med 1995;6:103–109.Google Scholar
  61. 61.
    Lin JG, Ho SJ, Lin JC. Effect of acupuncture on cardiopulmonary function. Chin Med J 1996;109:482–485.PubMedGoogle Scholar
  62. 62.
    Lin JG, Lin JC, Salashin H. A study of effect of ear point pressing on physiological responses to exercise. J Chin Med 1995;6:37–46.Google Scholar
  63. 63.
    Änggåd E. Nitric oxide: mediator, murderer, and medicine. Lancet 1994;343:1199–1206.CrossRefGoogle Scholar
  64. 64.
    Nathan C, Xie QW. Nitric oxide synthases: Roles, tolls, and controls. Cell 1994;78:915–918.PubMedCrossRefGoogle Scholar
  65. 65.
    Bult H, Boeckxstaens GE, Pelckmans PA, Jordaens FH, Maercke YMV, Herman AG. Nitric oxide as an inhibitory non-adrenergic non-cholinergic neurotransmitter. Nature 1990;345:346–347.PubMedCrossRefGoogle Scholar
  66. 66.
    Bredt DS, Hwang PM, Snyder SH. Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 1990;347:768–770.PubMedCrossRefGoogle Scholar
  67. 67.
    Chiu JH, Lui WY, Chen YL, Hong CY. Local somatothermal stimulation inhibits the motility of sphincter of Oddi in cats, rabbits and humans through nitrergic neural release of nitric oxide. Life Sci 1998;63:413–428.PubMedCrossRefGoogle Scholar
  68. 68.
    Jiang JK, Chiu JH, Lin JK. Local somatothermal stimulation inhibits motility of the internal anal sphincter through nitrergic neural release of nitric oxide. Dis Colon Rectum 2000;43:381–388.PubMedCrossRefGoogle Scholar
  69. 69.
    Bukau B, Horwich AL. The Hsp70 and Hsp60 chaperone machines. Cell 1998;92:351–366.PubMedCrossRefGoogle Scholar
  70. 70.
    Frydman J, Nimmesgern E, Ohtsuka K, Hartl FU. Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones. Nature 1994;370:111–117.PubMedCrossRefGoogle Scholar
  71. 71.
    Lin YH, Chiu JH, Tung HH, Tsou MT, Lui WY, Wu CW. Preconditioning somatothermal stimulation on right seventh intercostal nerve territory increases hepatic heat shock protein 70 and protects the liver from ischemia-reperfusion injury in rats. J Surg Res 2001;99:328–334.PubMedCrossRefGoogle Scholar
  72. 72.
    Tsou MT, Ho JY, Lin CH, Chiu JH. Proteomic analysis finds different myocardial protective mechanisms for median nerve stimulation by electroacupuncture and by local somatothermal stimulation. Int J Mol Med 2004;14:553–563.PubMedGoogle Scholar

Copyright information

© Chinese Association of the Integration of Traditional and Western Medicine and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Graduate Institute of Chinese Medical ScienceChina Medical University TaichungTaichungTaiwan, China
  2. 2.Graduate Institute of Acupuncture ScienceChina Medical UniversityTaichungTaiwan, China
  3. 3.Graduate Institute of Chinese Medical ScienceChina Medical UniversityTaichungTaiwan

Personalised recommendations