Skip to main content
Log in

Effect of Qingre Quyu Granule (清热祛瘀颗粒) on stabilizing plaques in the brachiocephalic artery of apolipoprotein E deficient mice

  • Experimental Research
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Objective

To investigate the effect of Qingre Quyu Granule (清热祛瘀颗粒, QRQYG) on stabilizing vulnerable plaques in apolipoprotein E (ApoE) deficient mice.

Methods

Seventy-two male ApoE deficient mice were given a high-fat diet from 6 weeks of age. At the 16th week, all the mice were randomized into 3 groups: the QRQYG group, the simvastatin group, and the control group. Sixteen weeks after administration of 0.9 g/kg QRQYG, 3 mg/kg simvastatin or 10 mg/kg sodium chloride per day to the respective groups, the animals were euthanized. The pathological morphologic changes in the vulnerable plaques were evaluated, the matrix metalloprotease-9 (MMP-9) expression was measured by immunohistofluorescence, the soluble intercellular adhesion molecule 1 (ICAM-1) was determined by ELISA, the nuclear factor kappaB (NF-κB) subunit p65 was measured by quantitative RT-PCR, and, finally, thrombospondin-1 (TSP-1) was determined by the immunohistochemical method.

Results

The plaque cross-sectional area in the brachiocephalic artery (23.7%, P<0.01), the lipid core of the plaque (43.1%±3.1%), and the number of buried fibrotic caps of the plaque were significantly decreased in the QRQYG group compared to the control group (both P<0.01); furthermore, the thickness of the fibrotic cap of the plaque increased and the intra-plaque hemorrhage of the plaque decreased. The serum soluble ICAM-1 (27.1±5.1 μg/mL), the protein expression of MMP-9 and TSP-1 and the p65 mRNA expression increased in the QRQYG group in comparison with the control group (P<0.05 or P<0.01).

Conclusion

QRQYG could stabilize the vulnerable plaque through inhibition of the inflammatory response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stoll G, Bendszus M. Inflammation and atherosclerosis: novel insights into plaque formation and destabilization. Stroke 2006; 37:1923–1932.

    Article  CAS  PubMed  Google Scholar 

  2. Goyette J, Yan WX, Yamen E, Chung YM, Lim SY, Hsu K, et al. Pleiotropic roles of S100A12 in coronary atherosclerotic plaque formation and rupture. J Immunol 2009;183:593–603.

    Article  CAS  PubMed  Google Scholar 

  3. Gautier EL, Huby T, Witztum JL, Ouzilleau B, Miller ER, Saint-Charles F, et al. Macrophage apoptosis exerts divergent effects on atherogenesis as a function of lesion stage. Circulation 2009;119:1795–1804.

    Article  CAS  PubMed  Google Scholar 

  4. Cheng WL, Wang Y, Cai Z, Ke YN, Liu XF, Fan SY. Effect of Qingre Quyu Granule on the vulnerable atherosolerotic plaque of carotid artery in patients with stable coronary artery disease patients with stable coronary artery disease. Chin J Integr Tradit West Med (Chin). 2009;29:1085–1088.

    Google Scholar 

  5. Suzuki J, Iwai M, Mogi M, Oshita A, Yoshii T, Higaki J, et al. Eplerenone with valsartan effectively reduces atherosclerotic lesion by attenuation of oxidative stress and inflammation. Arterioscler Thromb Vasc Biol 2006; 26:917–921.

    Article  CAS  PubMed  Google Scholar 

  6. Rosenfeld ME, Polinsky P, Virmani R, Kauser K, Rubanyi G, Schwartz SM, et al. Advanced atherosclerotic lesions in the innominate artery of the ApoE knockout mouse. Arterioscler Thromb Vasc Biol 2000;20: 2587–2592.

    CAS  PubMed  Google Scholar 

  7. Johnson JL, Jackson CL. Atherosclerotic plaque rupture in the apoli-poprotein E knockout mouse. Atherosclerosis 2001;154:399–406.

    Article  CAS  PubMed  Google Scholar 

  8. Calara F, Silvestre M, Casanada F, Yuan N, Napoli C, Palinski W. Spontaneous plaque rupture and secondary thrombosis in apolipoprotein E-deficient and LDL receptor-deficient mice. J Pathol 2001;195: 257–263.

    Article  CAS  PubMed  Google Scholar 

  9. Zhou J, Moller J, Danielsen CC, Bentzon J, Ravn HB, Austin RC, et al. Dietary supplementation with methionine and homocysteine promotes early atherosclerosis but not plaque rupture in apoE-deficient mice. Arterioscler Thromb Vasc Biol 2001;21:1470–1476.

    Article  CAS  PubMed  Google Scholar 

  10. Williams H, Johnson JL, Carson KG, Jackson CL. Characteristics of intact and ruptured atherosclerotic plaques in brachiocephalic arteries of apolipoprotein E knockout mice. Arterioscler Trterioscler Vasc Biol 2002;22:788–792.

    Article  CAS  Google Scholar 

  11. Morrow DA. Cardiovascular risk prediction in patients with stable and unstable coronary heart disease. Circulation 2010;121:2681–2691.

    Article  PubMed  Google Scholar 

  12. Moreno PR, Sanz J, Fuster V. Promoting mechanisms of vascular health: circulating progenitor cells, angiogenesis, and reverse cholesterol transport. J Am Coll Cardiol 2009 23;53:2315–2323.

    Article  Google Scholar 

  13. Barlic J, Zhu W, Murphy PM. Atherogenic lipids induce high-density lipoprotein uptake and cholesterol efflux in human macrophages by up-regulating transmembrane chemokine CXCL16 without engaging CXCL16-dependent cell adhesion. J Immunol 2009 15;182:7928–7936.

    Article  Google Scholar 

  14. Wu H, Gower RM, Wang H, Perrard XY, Ma R, Bullard DC, et al. Functional role of CD11c+ monocytes in atherogenesis associated with hypercholesterolemia. Circulation 2009;119:2708–2717.

    Article  CAS  PubMed  Google Scholar 

  15. Robertson L, Grip L, Mattsson Hultén L, Hulthe J, Wiklund O. Release of protein as well as activity of MMP-9 from unstable atherosclerotic plaques during percutaneous coronary intervention. J Intern Med 2007; 262:659–667.

    Article  CAS  PubMed  Google Scholar 

  16. Bennett BJ, Scatena M, Kirk EA, Rattazzi M, Varon RM, Averill M, et al. Osteoprotegerin inactivation accelerates advanced atherosclerotic lesion progression and calcification in older ApoE-/-mice. Arterioscler Thromb Vasc Biol 2006;26:2117–2124.

    Article  CAS  PubMed  Google Scholar 

  17. Yearley JH, Xia D, Pearson CB, Carville A, Shannon RP, Mansfield KG. Interleukin-18 predicts atherosclerosis progression in SIV-infected and uninfected rhesus monkeys (Macaca mulatta) on a high-fat/high-cholesterol diet. Lab Invest 2009;89:657–667.

    Article  CAS  PubMed  Google Scholar 

  18. Wang Y, Zhao X, Jin H, Wei H, Li W, Bu D, et al. Role of hydrogen sulfide in the development of atherosclerotic lesions in apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol 2009;29:173–179.

    Article  CAS  PubMed  Google Scholar 

  19. Shaw JA, Bobik A, Murphy A, Kanellakis P, Blombery P, Mukhamedova N, et al. Infusion of reconstituted high-density lipoprotein leads to acute changes in human atherosclerotic plaque. Circ Res 2008;103:1084–1091.

    Article  CAS  PubMed  Google Scholar 

  20. She ZG, Zheng W, Wei YS, Chen HZ, Wang AB, Li HL, et al. Human paraoxonase gene cluster transgenic over expression represses atherogenesis and promotes atherosclerotic plaque stability in ApoE-null mice. Circ Res 2009;104:1160–1168.

    Article  CAS  PubMed  Google Scholar 

  21. Lawson C, Wolf S. ICAM-1 signaling in endothelial cells. Pharmacol Rep 2009;61:22–32.

    CAS  PubMed  Google Scholar 

  22. Schmidt C, Hulthe J, Fagerberg. ICAM-1 and VCAM-1 are increased in initially healthy middle-aged men who develop cardiovascular disease during 6.6 years of follow-up. Angiology 2009;60:108–114.

    Article  CAS  PubMed  Google Scholar 

  23. Abilleira S, Bevan S, Markus HS. The role of genetic variants of matrix metalloproteinases in coronary and carotid atherosclerosis. J Med Genet 2006;43:897–901.

    Article  CAS  PubMed  Google Scholar 

  24. Lin SJ, Shyue SK, Hung YY, Chen YH, Ku HH, Chen JW, et al. Nuclear factor κB signaling in atherogenesis arteriosclerosis. Thrombosis Vascul Biol 2005;25:904–914.

    Article  Google Scholar 

  25. Moura R, Tjwa M, Vandervoort P, Van Kerckhoven S, Holvoet P, Hoylaerts MF. Thrombospondin-1 deficiency accelerates atherosclerotic plaque maturation in ApoE-/-mice. Circ Res 2008;103:1181–1189.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong-xin Huang  (黄从新).

Additional information

Supported by the Capital Medical Development Scientific Research Foundation (No. SF-2007-III-41)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Cheng, Wl., Ke, Yn. et al. Effect of Qingre Quyu Granule (清热祛瘀颗粒) on stabilizing plaques in the brachiocephalic artery of apolipoprotein E deficient mice. Chin. J. Integr. Med. 16, 442–447 (2010). https://doi.org/10.1007/s11655-010-0545-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-010-0545-6

Keywords

Navigation