Skip to main content

Advertisement

Log in

Inhibitory effect of Kangjia Pill (抗甲丸) on thyrocyte proliferation in rat goiter model

  • Experimental Research
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Objective

To investigate the inhibitory effects of Kangjia Pill (抗甲丸, KJP) on the cell proliferation in rat goiter model induced by methimazole (MMI).

Methods

Fifty-six Wistar rats were randomly divided into four groups: the normal group, MMI model group (MMI), low dose of KJP group (LKJP), and high dose of KJP (HKJP). Except the normal group (20 rats), the other groups (12 rats in each) were given 0.04% (w/v) MMI through the drinking water until the end of the experiment. One week later, the rats in the LKJP and HKJP groups were given KJP by gastrogavage at the dose of 250 mg/(kg · d) and 1 000 mg/(kg · d), respectively for 12 weeks. The relative thyroid weight (mg/100 g body weight) of each rat was accessed. The expression of proliferating cell nuclear antigen (PCNA) was determined by immunohistochemistry, and the correlation analysis between the PCNA positive thyrocytes and the relative thyroid weight was performed. The expressions of PCNA and cyclin D1 were examined with Western blotting.

Results

After KJP treatment for 12 weeks, compared with the MMI group, the relative thyroid weight of the HKJP group decreased significantly, and the positive thyrocyte populations of PCNA in the two KJP groups reduced markedly (all P<0.05). The correlation analysis showed that PCNA was closely correlated with thyrocyte proliferation (r=0.685, P<0.05). KJP significantly decreased the protein expression of PCNA and cyclin D1 in the thyroid specimens (P<0.05), the high dose showed better effects.

Conclusion

KJP played a therapeutic role via inhibiting cell proliferation in the rat goitrous glands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Riesco JM, Juanes JA, Carretero J, Blanco EJ, Riesco-Lopez JM, Vazquez G, et al. Cell proliferation and apoptosis of thyroid follicular cells are involved in the involution of experimental non-tumoral hyperplastic goiter. Anat Embryol 1998;198: 439–450.

    Article  PubMed  CAS  Google Scholar 

  2. Tamura M, Kimura H, Koji T, Tominaga T, Ashizawa K, Kiriyama T, et al. Role of apoptosis of thyrocytes in a rat model of goiter. A possible involvement of Fas system. Endocrinology 1998; 139: 3646–3653.

    Article  PubMed  CAS  Google Scholar 

  3. Prelich G, Tan CK, Kostura M, Mathews MB, So AG, Downey KM, et al. Functional identity of proliferating cell nuclear antigen and a DNA polymerase-delta auxiliary protein. Nature 1987; 326: 517–520.

    Article  PubMed  CAS  Google Scholar 

  4. Dietrich DR. Toxicological and pathological applications of proliferating cell nuclear antigen (PCNA), a novel endogenous marker for cell proliferation. Crit Rev Toxicol 1993; 23: 77–109.

    Article  PubMed  CAS  Google Scholar 

  5. Connolly KM, Bogdanffy MS. Evaluation of proliferating cell nuclear antigen (PCNA) as an endogenous marker of cell proliferation in rat liver: a dual-stain comparison with 5-bromo-2′-deoxyuridine. J Histochem Cytochem 1993; 41: 1–6.

    PubMed  CAS  Google Scholar 

  6. Jeong HS, Lee GK Song HG, Sung RH. Proliferative activity of thyroid lesions evaluated by mitotic count and proliferating cell nuclear antigen (PCNA). Korean J Pathol 1997;31: 1297–1307.

    Google Scholar 

  7. Baldin V, Lukas J, Marcote MJ, Pagano M, Draetta G. Cyclin D1 is a nuclear protein required for cell cycle progression in G1. Genes Dev 1993; 7: 812–821.

    Article  PubMed  CAS  Google Scholar 

  8. DeGregori J, Kowalik T, Nevins JR. Cellular targets for activation by the E2F1 transcription factor include DNA synthesis- and G1/S-regulatory genes. Mol Cell Biol 1995; 15: 4215–4224.

    PubMed  CAS  Google Scholar 

  9. Stacey DW. Cyclin D1 serves as a cell cycle regulatory switch in actively proliferating cells. Curr Opin Cell Biol 2003;15: 158–163.

    Article  PubMed  CAS  Google Scholar 

  10. Patel VA, Hill DJ, Sheppard MC, Wang F, Logan A, Eggo MC. Apoptosis during goitre involution-the role of Bcl-2. J Endocrinol 2000;164: 323–330.

    Article  PubMed  CAS  Google Scholar 

  11. van Dierendonck JH, Wijsman JH, Keijzer R, van de Velde CJ, Cornelisse CJ. Cell-cycle-related staining patterns of anti-proliferating cell nuclear antigen monoclonal antibodies. Comparison with BrdUrd labeling and Ki-67 staining. Am J Pathol 1991;138: 1165–1172.

    PubMed  Google Scholar 

  12. Maga G, Hubscher U. Proliferating cell nuclear antigen (PCNA): a dancer with many partners. J Cell Sci 2003; 116: 3051–3060.

    Article  PubMed  CAS  Google Scholar 

  13. Musaro A, McCullagh K, Paul A, Houghton L, Dobrowolny G, Molinaro M, et al. Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat Genet 2001; 27: 195–200.

    Article  PubMed  CAS  Google Scholar 

  14. Shimomura Y, Matsuo H, Samoto T, Maruo T. Up-regulation by progesterone of proliferating cell nuclear antigen and epidermal growth factor expression in human uterine leiomyoma. J Clin Endocrinol Metab 1998;83: 2192–2198.

    Article  PubMed  CAS  Google Scholar 

  15. Sera N, Kawakami A, Nakashima T, Nakamura H, Imaizumi M, Koji T, et al. Fas/FasL mediated apoptosis of thyrocytes in Graves’ disease. Clin Exp Immunol 2001;124: 197–207.

    Article  PubMed  CAS  Google Scholar 

  16. Kusunoki T, Nakano T, Funasaka K, Murata K, Nishida S, Tomura T, et al. Proliferating cell nuclear antigen (PCNA) on human diseased thyroid cells. Nippon Jibiinkoka Gakkai Kaiho 1993;96: 651–658.

    PubMed  CAS  Google Scholar 

  17. Shimizu T, Usuda N, Yamanda T, Sugenoya A, Iida F. Proliferative activity of human thyroid tumors evaluated by proliferating cell nuclear antigen/cyclin immunohistochemical studies. Cancer 1993;71: 2807–2812.

    Article  PubMed  CAS  Google Scholar 

  18. Laezza C, Mazziotti G, Fiorentino L, Gazzerro P, Portella G, Gerbasio D, et al. HMG-CoA reductase inhibitors inhibit rat propylthiouracil-induced goiter by modulating the ras-MAPK pathway. J Mol Med 2006; 84: 967–973.

    Article  PubMed  CAS  Google Scholar 

  19. Velicky J, Titlbach M, Lojda Z, Jelinek F, Vobecky M, Raska I. Expression of the proliferating cell nuclear antigen (PCNA) in the rat thyroid gland after exposure to bromide. Acta Histochem 1997; 99: 391–399.

    PubMed  CAS  Google Scholar 

  20. Lee KE, Lee HJ, Kim YH, Yu HJ, Yang HK, Kim WH, et al. Prognostic significance of p53, nm23, PCNA and c-erbB-2 in gastric cancer. Jpn J Clin Oncol 2003; 33: 173–179.

    Article  PubMed  Google Scholar 

  21. Russo G, Claudio PP, Fu Y, Stiegler P, Yu Z, Macaluso M, et al. pRB2/p130 target genes in non-small lung cancer cells identified by microarray analysis. Oncogene 2003; 22: 6959–6969.

    Article  PubMed  CAS  Google Scholar 

  22. Benjamin DR, Gown AM. Aberrant cytoplasmic expression of proliferating cell nuclear antigen in Hodgkin’s disease. Am J Surg Pathol 1991;15:764–768.

    Article  PubMed  CAS  Google Scholar 

  23. Beier F, Lee RJ, Taylor AC, Pestell RG, LuValle P. Identification of the cyclin D1 gene as a target of activating 12. transcription factor 2 in chondrocytes. Proc Natl Acad Sci USA 1999; 96: 1433–1438.

    Article  PubMed  CAS  Google Scholar 

  24. Jiang L, Chen RS, Li JC. siRNA-cyclin D1 inhibit cell proliferation in breast cancer MCF-7 cell line. J Molecul Cell Biol (Chin) 2006; 39: 118–122.

    CAS  Google Scholar 

  25. Xiong W, Pestell RG, Watanabe G, Li J, Rosner MR, Hershenson MB. Cyclin D1 is required for S phase traversal in bovine tracheal myocytes. Am J Physiol 1997; 272: L1205–1210.

    PubMed  CAS  Google Scholar 

  26. Yamamoto K, Hirai A, Ban T, Saito J, Tahara K, Terano T, et al. Thyrotropin induces G1 cyclin expression and accelerates G1 phase after insulin-like growth factor I stimulation in FRTL-5 cells. Endocrinology 1996; 137: 2036–2042.

    Article  PubMed  CAS  Google Scholar 

  27. Basolo F, Caligo MA, Pinchera A, Fedeli F, Baldanzi A, Miccoli P, et al. Cyclin D1 overexpression in thyroid carcinomas: relation with clinico-pathological parameters, retinoblastoma gene product, and Ki67 labeling index. Thyroid 2000;10: 741–746.

    Article  PubMed  CAS  Google Scholar 

  28. Lazzereschi D, Sambuco L, Carnovale Scalzo C, Ranieri A, Mincione G, Nardi F, et al. Cyclin D1 and Cyclin E expression in malignant thyroid cells and in human thyroid carcinomas. Int J Cancer 1998; 76: 806–811.

    Article  PubMed  CAS  Google Scholar 

  29. Nakashima M, Meirmanov S, Naruke Y, Kondo H, Saenko V, Rogounovitch T, et al. Cyclin D1 overexpression in thyroid tumours from a radio-contaminated area and its correlation with Pin1 and aberrant beta-catenin expression. J Pathol 2004; 202: 446–455.

    Article  PubMed  CAS  Google Scholar 

  30. Shi Y, Zou M, Varkondi E, Nagy A, Kozma L, Farid NR. Cyclin D1 in thyroid carcinomas. Thyroid 2001;11: 709–710.

    Article  PubMed  CAS  Google Scholar 

  31. Gadbois DM, Peterson S, Bradbury EM, Lehnert BE. CDK4/cyclin D1/PCNA complexes during staurosporine-induced G1 arrest and G0 arrest of human fibroblasts. Exp Cell Res 1995; 220: 220–225.

    Article  PubMed  CAS  Google Scholar 

  32. Sourisseau T, Georgiadis A, Tsapara A, Ali RR, Pestell R, Matter K, et al. Regulation of PCNA and cyclin D1 expression and epithelial morphogenesis by the ZO-1-regulated transcription factor ZONAB/DbpA. Mol Cell Biol 2006; 26: 2387–2398.

    Article  PubMed  CAS  Google Scholar 

  33. Zhang S, Zhu C, Liu Q, Wang W l. Effects of chloroquine on GFAP, PCNA and cyclin D1 in hippocampus and cerebral cortex of rats with seizures induced by pentylenetetrazole. J Huazhong Univ Sci Tech (Chin) Med Sci 2005;25: 625–628.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-jun Zhao  (赵家军).

Additional information

Supported by the National Natural Science Foundation of China (No. 30672748), the Natural Science Foundation of Shandong Province (No. 22003C02), and the Shandong Administration of Traditional Chinese Medicine (No. 2005-070)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, Y., Zhou, J., Yu, Sj. et al. Inhibitory effect of Kangjia Pill (抗甲丸) on thyrocyte proliferation in rat goiter model. Chin. J. Integr. Med. 15, 284–288 (2009). https://doi.org/10.1007/s11655-009-0284-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-009-0284-8

Key Words

Navigation