Skip to main content
Log in

„Liquid biopsy“ – schon reif für Therapieentscheidungen?

Liquid biopsy—ready to guide treatment decisions?

  • Topic
  • Published:
best practice onkologie Aims and scope

Zusammenfassung

Flüssigbiopsien („liquid biopsy“, LB) ermöglichen die wenig invasive und wiederholbare Materialgewinnung von Tumorpatienten aus verschiedenen Körperflüssigkeiten wie beispielsweise dem Blut, Urin oder Liquor. Mithilfe der LB können dann intakte Tumorzellen oder Produkte von Tumorzellen wie RNA, DNA, extrazelluläre Vesikel oder Proteine untersucht werden. Die Möglichkeiten, die sich durch den Einsatz von LB-Methoden ergeben, beinhalten die Früherkennung, Risikostratifizierung, Therapiesteuerung und Rückfallerkennung von (soliden) Tumoren. Trotz des enormen Potenzials ist der Einsatz der LB derzeit auf klinische Studien und wenige zugelassene Tests begrenzt. Eine flächendeckende Implementierung der LB in die klinische Routine verspricht eine individuellere Tumortherapie mit verbesserten Detektions- und Überlebensraten. Im Folgenden präsentieren die Autoren einen Überblick über die häufigsten Methoden und stellen die derzeitige Studienlage kritisch dar. Ebenso werden potenzielle Hürden und Bemühungen auf dem Weg zur standardmäßigen klinischen Implementierung diskutiert.

Abstract

Liquid biopsy (LB)-based methods enable less invasive and repeatable sample collection from various body fluids of cancer patients including blood, urine, and cerebrospinal fluid. Samples retrieved by LB can be used to characterize intact tumor cells or tumor-associated products such as RNA, DNA, extracellular vesicles, and proteins. Applications of LB include early detection, risk stratification, treatment guidance, and detection of relapse of (solid) tumors. Despite its enormous potential, the use of LB is currently limited to clinical trials and a small number of approved tests. The implementation of LB in clinical practice promises a more personalized cancer treatment with improved detection and survival rates. In this article, the authors provide an overview of the most common LB methods and critically review the current study situation. Additionally, potential hurdles that must be overcome and efforts for clinical implementation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

cfDNA:

Zellfreie Desoxyribonukleinsäure, „cell-free deoxyribonucleic acid“

CNA:

Kopienzahlvariationen, „copy number aberrations“

CTC:

Zirkulierende Tumorzelle, „circulating tumor cell“

ctDNA:

Zirkulierende Tumor-Desoxyribonukleinsäure, „circulating tumor deoxyribonucleic acid“

ddPCR:

Digitale Tröpfchen-Polymerasekettenreaktion, „droplet digital polymerase chain reaction“

DELFI:

„DNA evaluation of fragments for early interception“

DNA:

Desoxyribonukleinsäure

dPCR:

Digitale Polymerasekettenreaktion, „digital polymerase chain reaction“

EGFR:

„Epidermal growth factor receptor“

ELBS:

European Liquid Biopsy Society

EU:

Europäische Union

EV:

Extrazelluläre Vesikel

FDA:

U.S. Food and Drug Administration

ILSA:

International Liquid Biopsy Standardization Alliance

KRAS:

„Kirsten rat sarcoma“

LB:

Flüssigbiopsie, Flüssigkeitsbiopsie, „liquid biopsy“

miRNA:

MicroRNA

MRD:

Minimale Resterkrankung, „minimal residual disease“

NGS:

Nächste-Generation-Sequenzierung, „next-generation sequencing“

NPW:

Negativer prädiktiver Wert

NSCLC:

Nichtkleinzelliges Lungenkarzinom, „non-small cell lung cancer“

PCR:

Polymerasekettenreaktion, „polymerase chain reaction“

PI3K:

Phosphoinositid-3-Kinase

PPW:

Positiver prädiktiver Wert

RECIST:

Response Evaluation Criteria In Solid Tumors

RNA:

Ribonukleinsäure, „ribonucleic acid“

RT-PCR:

Quantitative Echtzeit-Polymerasekettenreaktion, „real-time quantitative PCR“

Literatur

  1. Pantel K, Alix-Panabieres C (2019) Liquid biopsy and minimal residual disease—latest advances and implications for cure. Nat Rev Clin Oncol 16(7):409–424

    Article  CAS  PubMed  Google Scholar 

  2. Pantel K, Alix-Panabières C (2010) Circulating tumour cells in cancer patients: challenges and perspectives. Trends Mol Med 16(9):398–406

    Article  PubMed  Google Scholar 

  3. Alix-Panabieres C, Pantel K (2021) Liquid biopsy: from discovery to clinical application. Cancer Discov 11(4):858–873

    Article  CAS  PubMed  Google Scholar 

  4. Bardelli A, Pantel K (2017) Liquid biopsies, what we do not know (yet). Cancer Cell 31(2):172–179

    Article  CAS  PubMed  Google Scholar 

  5. Ignatiadis M, Sledge GW, Jeffrey SS (2021) Liquid biopsy enters the clinic—implementation issues and future challenges. Nat Rev Clin Oncol 18(5):297–312

    Article  PubMed  Google Scholar 

  6. Keller L, Pantel K (2019) Unravelling tumour heterogeneity by single-cell profiling of circulating tumour cells. Nat Rev Cancer 19(10):553–567

    Article  CAS  PubMed  Google Scholar 

  7. Dive C, Brady G (2017) Snapshot: circulating tumor cells. Cell 168(4):742–742.e1

    Article  CAS  PubMed  Google Scholar 

  8. Pantel K, Alix-Panabieres C (2010) Circulating tumour cells in cancer patients: challenges and perspectives. Trends Mol Med 16(9):398–406

    Article  PubMed  Google Scholar 

  9. Koch C et al (2020) Characterization of circulating breast cancer cells with tumorigenic and metastatic capacity. EMBO Mol Med 12(9):e11908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Baccelli I et al (2013) Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat Biotechnol 31(6):539–544

    Article  CAS  PubMed  Google Scholar 

  11. Keller L et al (2021) Clinical relevance of blood-based ctDNA analysis: mutation detection and beyond. Br J Cancer 124(2):345–358

    Article  PubMed  Google Scholar 

  12. Abbosh C et al (2017) Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature 545(7655):446–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fleischhacker M, Schmidt B (2007) Circulating nucleic acids (CNAs) and cancer—a survey. Biochim Biophys Acta 1775(1):181–232

    CAS  PubMed  Google Scholar 

  14. Sacher AG et al (2016) Prospective validation of rapid plasma genotyping for the detection of EGFR and KRAS mutations in advanced lung cancer. JAMA Oncol 2(8):1014–1022

    Article  PubMed  PubMed Central  Google Scholar 

  15. Heitzer E et al (2019) Current and future perspectives of liquid biopsies in genomics-driven oncology. Nat Rev Genet 20(2):71–88

    Article  CAS  PubMed  Google Scholar 

  16. Luo H et al (2020) Circulating tumor DNA methylation profiles enable early diagnosis, prognosis prediction, and screening for colorectal cancer. Sci Transl Med 12(524):eaax7533

    Article  CAS  PubMed  Google Scholar 

  17. Brennan K et al (2020) A comparison of methods for the isolation and separation of extracellular vesicles from protein and lipid particles in human serum. Sci Rep 10(1):1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hoshino A et al (2015) Tumour exosome integrins determine organotropic metastasis. Nature 527(7578):329–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schwarzenbach H, Hoon DS, Pantel K (2011) Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 11(6):426–437

    Article  CAS  PubMed  Google Scholar 

  20. Schwarzenbach H et al (2014) Clinical relevance of circulating cell-free microRNAs in cancer. Nat Rev Clin Oncol 11(3):145–156

    Article  CAS  PubMed  Google Scholar 

  21. Chen X et al (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18(10):997–1006

    Article  CAS  PubMed  Google Scholar 

  22. Leest PV et al (2020) Comparison of circulating cell-free DNA extraction methods for downstream analysis in cancer patients. Cancers 12(5) 1222. https://doi.org/10.3390/cancers12051222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ofman JJ, Hall MP, Aravanis AM GRAIL and the quest for earlier multi-cancer detection. https://www.nature.com/articles/d42473-020-00079-y. Zugegriffen: 18. Jan. 2023

  24. Schrag D et al (2022) 903O A prospective study of a multi-cancer early detection blood test. Ann Oncol 33:S961

    Article  Google Scholar 

  25. Razavi P et al (2019) High-intensity sequencing reveals the sources of plasma circulating cell-free DNA variants. Nat Med 25(12):1928–1937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cristiano S et al (2019) Genome-wide cell-free DNA fragmentation in patients with cancer. Nature 570(7761):385–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Payne SR (2010) From discovery to the clinic: the novel DNA methylation biomarker (m)SEPT9 for the detection of colorectal cancer in blood. Epigenomics 2(4):575–585

    Article  CAS  PubMed  Google Scholar 

  28. Lamb YN, Dhillon S (2017) Epi procolon® 2.0 CE: a blood-based screening test for colorectal cancer. Mol Diagn Ther 21(2):225–232

    Article  PubMed  Google Scholar 

  29. Nian J et al (2017) Diagnostic accuracy of methylated SEPT9 for blood-based colorectal cancer detection: a systematic review and meta-analysis. Clin Transl Gastroenterol 8(1):e216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Adler A et al (2014) Improving compliance to colorectal cancer screening using blood and stool based tests in patients refusing screening colonoscopy in Germany. BMC Gastroenterol 14:183

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tan Y, Wu H (2018) The significant prognostic value of circulating tumor cells in colorectal cancer: a systematic review and meta-analysis. Curr Probl Cancer 42(1):95–106

    Article  PubMed  Google Scholar 

  32. Riethdorf S et al (2018) Clinical applications of the CellSearch platform in cancer patients. Adv Drug Deliv Rev 125:102–121

    Article  CAS  PubMed  Google Scholar 

  33. Pascual J et al (2022) ESMO recommendations on the use of circulating tumour DNA assays for patients with cancer: a report from the ESMO Precision Medicine Working Group. Ann Oncol 33(8):750–768

    Article  CAS  PubMed  Google Scholar 

  34. Odegaard JI et al (2018) Validation of a plasma-based comprehensive cancer genotyping assay utilizing orthogonal tissue- and plasma-based methodologies. Clin Cancer Res 24(15):3539–3549

    Article  CAS  PubMed  Google Scholar 

  35. Food and Drug Administration (2020) FDA approves first liquid biopsy next-generation sequencing companion diagnostic test. https://www.fda.gov/news-events/press-announcements/fda-approves-first-liquid-biopsy-next-generation-sequencing-companion-diagnostic-test. Zugegriffen: 18. Jan. 2023

  36. Woodhouse R et al (2020) Clinical and analytical validation of FoundationOne Liquid CDx, a novel 324-Gene cfDNA-based comprehensive genomic profiling assay for cancers of solid tumor origin. PLoS ONE 15(9):e237802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Food and Drug Administration cobas EGFR Mutation Test v2. 2016. https://www.fda.gov/drugs/resources-information-approved-drugs/cobas-egfr-mutation-test-v2. Zugegriffen: 18. Jan. 2023

  38. Li M (2016) Statistical methods for clinical validation of follow-on companion diagnostic devices via an external concordance study. Stat Biopharm Res 8(3):355–363

    Article  Google Scholar 

  39. Nakajima EC et al (2022) FDA approval summary: sotorasib for KRAS G12C-mutated metastatic NSCLC. Clin Cancer Res 28(8):1482–1486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bauml JM et al (2022) Clinical validation of Guardant360 CDx as a blood-based companion diagnostic for sotorasib. Cancer Treat Res 166:270–278

    CAS  Google Scholar 

  41. Oxnard GR et al (2016) Association between plasma genotyping and outcomes of treatment with osimertinib (AZD9291) in advanced non-small-cell lung cancer. J Clin Oncol 34(28):3375–3382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sundaresan TK et al (2016) Detection of T790M, the acquired resistance EGFR mutation, by tumor biopsy versus noninvasive blood-based analyses. Clin Cancer Res 22(5):1103–1110

    Article  CAS  PubMed  Google Scholar 

  43. Jenkins S et al (2017) Plasma ctDNA analysis for detection of the EGFR T790M mutation in patients with advanced non–small cell lung cancer. J Thorac Oncol 12(7):1061–1070

    Article  PubMed  Google Scholar 

  44. André F et al (2021) Alpelisib plus fulvestrant for PIK3CA-mutated, hormone receptor-positive, human epidermal growth factor receptor-2-negative advanced breast cancer: final overall survival results from SOLAR‑1. Ann Oncol 32(2):208–217

    Article  PubMed  Google Scholar 

  45. Fehm T et al (2021) Abstract PD3-12: efficacy of the tyrosine kinase inhibitor lapatinib in the treatment of patients with HER2-negative metastatic breast cancer and HER2-positive circulating tumor cells—results from the randomized phase III DETECT III trial. Cancer Res 81(4_Supplement):PD3-12

    Article  Google Scholar 

  46. Trapp E et al (2019) Presence of circulating tumor cells in high-risk early breast cancer during follow-up and prognosis. J Natl Cancer Inst 111(4):380–387

    Article  PubMed  Google Scholar 

  47. van Ginkel JH et al (2017) Preanalytical blood sample workup for cell-free DNA analysis using Droplet Digital PCR for future molecular cancer diagnostics. Cancer Med 6(10):2297–2307

    Article  PubMed  PubMed Central  Google Scholar 

  48. van Dessel LF et al (2017) Application of circulating tumor DNA in prospective clinical oncology trials—standardization of preanalytical conditions. Mol Oncol 11(3):295–304

    Article  PubMed  PubMed Central  Google Scholar 

  49. Chen M, Zhao H (2019) Next-generation sequencing in liquid biopsy: cancer screening and early detection. Hum Genomics 13:34. https://doi.org/10.1186/s40246-019-0220-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fernandes Marques J et al (2019) Circulating tumor DNA: a step into the future of cancer management. Acta Cytol 63(6):456–465

    Article  CAS  PubMed  Google Scholar 

  51. Xue VW, Wong CSC, Cho WCS (2019) Early detection and monitoring of cancer in liquid biopsy: advances and challenges. Expert Rev Mol Diagn 19(4):273–276

    Article  CAS  PubMed  Google Scholar 

  52. Schwaederle M et al (2015) Impact of precision medicine in diverse cancers: a meta-analysis of phase II clinical trials. J Clin Oncol 33(32):3817–3825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jardim DL et al (2015) Impact of a biomarker-based strategy on oncology drug development: a meta-analysis of clinical trials leading to FDA approval. J Natl Cancer Inst 107(11):djv253

    Article  PubMed  Google Scholar 

  54. Tie J et al (2022) Circulating tumor DNA analysis guiding Adjuvant therapy in stage II colon cancer. N Engl J Med 386(24):2261–2272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Förderung

N.S. erhielt finanzielle Unterstützung durch ein Else Kröner-Fresenius-Stiftung iPRIME Stipendium (2021_EKPK.10) im Rahmen ihrer Promotion am Universitätsklinikum Hamburg-Eppendorf. K.P. erhielt Forschungsförderung durch EU/IMI CANCER-ID EFPIA, ERC Advanced Investigator Grant INJURMET (Förderungsnummer: 834974), European Union Horizon 2020 Research and Innovation program (Marie Skłodowska-Curie grant agreement; Förderungsnummer: 765492), ERA-NET EU/TRANSCAN 2 JTC 2016 PROLIPSY, Deutsche Krebshilfe (Förderungsnummer: 70112504) und Deutsche Forschungsgemeinschaft (DFG) im Rahmen des Schwerpunktprogramms µBone (Nummer: SPP2084). K.P. und D.J.S. erhielten finanzielle Unterstützung durch die Hiege Stiftung – die Deutsche Hautkrebsstiftung im Rahmen der Gründung des Fleur Hiege-Centrum für Hautkrebsforschung am Universitätsklinikum Hamburg-Eppendorf.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Klaus Pantel or Daniel J. Smit.

Ethics declarations

Interessenkonflikt

K.P. erhielt Honorare von BMS, Agena, Menarini, Novartis, Sanofi, Illumina, Abcam, MSD, Boehringer Ingelheim, Eppendorf und Hummingbird. C.M.T. Roeper, I. Hoehne, N. Schlepper, C. Koch, K. Pantel und D.J. Smit geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

Stephan Schmitz, Köln

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roeper, C.M.T., Hoehne, I., Schlepper, N. et al. „Liquid biopsy“ – schon reif für Therapieentscheidungen?. best practice onkologie 18, 194–202 (2023). https://doi.org/10.1007/s11654-023-00484-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11654-023-00484-x

Schlüsselwörter

Keywords

Navigation