Skip to main content
Log in

Tumorimpfstoffe

Cancer vaccines

  • Topic
  • Published:
best practice onkologie Aims and scope

Zusammenfassung

Hintergrund

Krebsimpfstoffe können das patienteneigene Immunsystem gezielt gegen Tumorzellen richten, indem sie Anti-Tumor-Immunantworten induzieren oder verstärken.

Ziel der Arbeit

Ziel der Arbeit ist es, einen Überblick über die sich rasch entwickelnde therapeutische Tumorvakzinierung, immunologische Hintergründe, Arten von Zielantigenen und Applikationsformen sowie deren Einsatz in der Behandlung maligner Erkrankungen zu geben.

Material und Methoden

Es erfolgte eine selektive Literaturrecherche.

Ergebnisse

Tumorvakzine vermögen potente T‑Zell-Immunantworten gegen Tumorantigene zu induzieren. Hierzu gehören tumorassoziierte Selbstantigene, Neoantigene aus tumorspezifischen Mutationen oder onkovirale Antigene. Verschiedenste Applikationsformen wie dendritische Zellvakzine, Peptid- oder auch RNA-Vakzine stehen zur Verfügung und werden in aktuellen klinischen Studien untersucht. Für den klinischen Erfolg einer Tumorimpfung ist neben der Auswahl geeigneter Zielantigene ein optimales Verhältnis von tumorantigenspezifischen T‑Zellen zu zielantigenpräsentierenden Tumorzellen unabdingbar, welches insbesondere in der adjuvanten Therapiesituation gegeben ist. Kombinationstherapien, insbesondere mit Immuncheckpointinhibitoren, versprechen hierbei synergistische Effekte, um den therapeutischen Nutzen von Tumorvakzinierungen weiter zu steigern.

Schlussfolgerung

Zunehmend auch in der Breite anwendbare Methoden der Personalisierung ermöglichen die Anwendung individualisierter therapeutischer Krebsimpfstoffe auch in größeren Patientenkollektiven. Die Auswahl der Zielantigene ist von zentraler Bedeutung für die Wirksamkeit der Tumorimpfstoffe, da deren Immunogenität und tumorspezifische Präsentation über HLA-Moleküle grundlegend für die Induktion tumorreaktiver T‑Zellen ist.

Abstract

Background

Cancer vaccines can specifically target the patient’s immune system against tumor cells by inducing or enhancing antitumor immune responses.

Objectives

The aim of this article is to provide an overview of immunological backgrounds, target antigens, cancer vaccine formats and their respective use in the treatment of cancer.

Materials and methods

A selective literature search was performed.

Results

Cancer vaccines are able to induce potent T cell responses against tumor antigens. These include tumor-associated self-antigens, neoantigens derived from tumor-specific mutations, or oncoviral antigens. Various vaccine formats including dendritic cell vaccines, peptide or RNA-based vaccines are available and are under investigation in current clinical trials. In addition to the selection of suitable target antigens, an optimal ratio of tumor antigen-specific T cells to tumor cells is essential for the clinical success of cancer vaccines and is often given in the adjuvant treatment setting. Furthermore, combination therapies, especially with immune checkpoint inhibitors, promise synergistic effects to further improve the effectiveness of tumor vaccination.

Conclusion

The increasing number of methods available for personalization enable the use of individualized cancer vaccine approaches in larger patient populations. The selection of target antigens is essential for the efficacy of cancer vaccines because their immunogenicity and tumor-specific presentation via HLA (human leukocyte antigen) molecules is fundamental for the induction of tumor-reactive T cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Thomas S, Prendergast GC (2016) Cancer vaccines: a brief overview. Methods Mol Biol 1403:755–761

    PubMed  Google Scholar 

  2. Ilyas S, Yang JC (2015) Landscape of tumor antigens in T cell immunotherapy. J Immunol 195(11):5117–5122

    CAS  PubMed  Google Scholar 

  3. Gjerstorff MF, Andersen MH, Ditzel HJ (2015) Oncogenic cancer/testis antigens: prime candidates for immunotherapy. Oncotarget 6(18):15772

    PubMed  PubMed Central  Google Scholar 

  4. Pagano JS et al (2004) Infectious agents and cancer: criteria for a causal relation. In: Seminars in cancer biology. Elsevier,

    Google Scholar 

  5. Schmidt M, Lill JR (2019) MHC class I presented antigens from malignancies: A perspective on analytical characterization & immunogenicity. J Proteomics 191:48–57

    CAS  PubMed  Google Scholar 

  6. Schumacher TN, Schreiber RD (2015) Neoantigens in cancer immunotherapy. Science 348(6230):69–74

    CAS  PubMed  Google Scholar 

  7. Yadav M et al (2014) Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature 515(7528):572–576

    CAS  PubMed  Google Scholar 

  8. Chalmers ZR et al (2017) Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med 9(1):1–14

    Google Scholar 

  9. Haen SP et al (2020) Towards new horizons: characterization, classification and implications of the tumour antigenic repertoire. Nat Rev Clin Oncol 17(10):595–610

    PubMed  PubMed Central  Google Scholar 

  10. Berlin C et al (2015) Mapping the HLA ligandome landscape of acute myeloid leukemia: a targeted approach toward peptide-based immunotherapy. Leukemia 29(3):647–659

    CAS  PubMed  Google Scholar 

  11. Bilich T et al (2020) Mass spectrometry-based identification of a B-cell maturation antigen-derived T‑cell epitope for antigen-specific immunotherapy of multiple myeloma. Blood Cancer J 10(2):1–10

    Google Scholar 

  12. Nelde A, Rammensee H‑G, Walz JS (2021) The peptide vaccine of the future. Mol Cell Proteomics 20:100022

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kowalewski DJ et al (2015) HLA ligandome analysis identifies the underlying specificities of spontaneous antileukemia immune responses in chronic lymphocytic leukemia (CLL). Proc Natl Acad Sci 112(2):E166–E175

    CAS  PubMed  Google Scholar 

  14. Hilf N et al (2019) Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature 565(7738):240–245

    CAS  PubMed  Google Scholar 

  15. Platten M et al (2021) A vaccine targeting mutant IDH1 in newly diagnosed glioma. Nature 592(7854):463-468. https://doi.org/10.1038/s41586-021-03363-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. De Gruijl TD et al (2008) Whole-cell cancer vaccination: from autologous to allogeneic tumor-and dendritic cell-based vaccines. Cancer Immunol Immunother 57(10):1569

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Salgia R et al (2003) Vaccination with irradiated autologous tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor augments antitumor immunity in some patients with metastatic non–small-cell lung carcinoma. J Clin Oncol 21(4):624–630

    PubMed  Google Scholar 

  18. Calmeiro J et al (2020) Dendritic cell vaccines for cancer immunotherapy: the role of human conventional type 1 dendritic cells. Pharmaceutics 12(2):158

    CAS  PubMed Central  Google Scholar 

  19. Carreno BM et al (2015) A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science 348(6236):803–808

    CAS  PubMed  PubMed Central  Google Scholar 

  20. May RJ et al (2007) Peptide epitopes from the Wilms’ tumor 1 oncoprotein stimulate CD4+ and CD8+ T cells that recognize and kill human malignant mesothelioma tumor cells. Clin Cancer Res 13(15):4547–4555

    CAS  PubMed  Google Scholar 

  21. Melief CJ (2013) „License to kill“ reflects joint action of CD4 and CD8 T cells. Clin Cancer Res 19(16):4295–4296

    CAS  PubMed  Google Scholar 

  22. Pardi N et al (2018) mRNA vaccines—a new era in vaccinology. Nat Rev Drug Discov 17(4):261

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sahin U et al (2017) Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547(7662):222–226

    CAS  PubMed  Google Scholar 

  24. Burris HA et al (2019) A phase I multicenter study to assess the safety, tolerability, and immunogenicity of mRNA-4157 alone in patients with resected solid tumors and in combination with pembrolizumab in patients with unresectable solid tumors. 37(15):2523. https://doi.org/10.1200/JCO.2019.37.15_suppl.2523

    Book  Google Scholar 

  25. Arlen PM et al (2007) Clinical safety of a viral vector based prostate cancer vaccine strategy. J Urol 178(4):1515–1520

    CAS  PubMed  Google Scholar 

  26. Draper SJ, Heeney JL (2010) Viruses as vaccine vectors for infectious diseases and cancer. Nat Rev Microbiol 8(1):62–73

    CAS  PubMed  Google Scholar 

  27. Rehman H et al (2016) Into the clinic: Talimogene laherparepvec (T-VEC), a first-in-class intratumoral oncolytic viral therapy. J Immunother Cancer 4(1):1–8

    Google Scholar 

  28. Maisonneuve C et al (2014) Unleashing the potential of NOD-and Toll-like agonists as vaccine adjuvants. Proc Natl Acad Sci 111(34):12294–12299

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Rammensee H‑G et al (2019) A new synthetic toll-like receptor 1/2 ligand is an efficient adjuvant for peptide vaccination in a human volunteer. J Immunother Cancer 7(1):1–18

    Google Scholar 

  30. Sabbatini P et al (2012) Phase I trial of overlapping long peptides from a tumor self-antigen and poly-ICLC shows rapid induction of integrated immune response in ovarian cancer patients. Clin Cancer Res 18(23):6497–6508

    CAS  PubMed  Google Scholar 

  31. Vonderheide RH, Glennie MJ (2013) Agonistic CD40 antibodies and cancer therapy. AACR,

    Google Scholar 

  32. Wen R et al (2019) Nanoparticle systems for cancer vaccine. Nanomedicine 14(5):627–648

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Aucouturier J et al (2002) Montanide ISA 720 and 51: a new generation of water in oil emulsions as adjuvants for human vaccines. Expert Rev Vaccines 1(1):111–118

    CAS  PubMed  Google Scholar 

  34. Kantoff PW et al (2010) Sipuleucel‑T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363(5):411–422

    CAS  PubMed  Google Scholar 

  35. Puzanov I et al (2016) Talimogene laherparepvec in combination with ipilimumab in previously untreated, unresectable stage IIIB–IV melanoma. J Clin Oncol 34(22):2619

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Giebel S et al (2017) Improving results of allogeneic hematopoietic cell transplantation for adults with acute lymphoblastic leukemia in first complete remission: an analysis from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation. Haematologica 102(1):139

    PubMed  PubMed Central  Google Scholar 

  37. Gupta V, Richards S, Rowe J (2013) Allogeneic, but not autologous, hematopoietic cell transplantation improves survival only among younger adults with acute lymphoblastic leukemia in first remission: an individual patient data meta-analysis. Blood 121(2):339–350

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Bilich T et al (2019) The HLA ligandome landscape of chronic myeloid leukemia delineates novel T‑cell epitopes for immunotherapy. Blood 133(6):550–565

    CAS  PubMed  Google Scholar 

  39. Sahin U et al (2020) An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. Nature 585(7823):107–112

    CAS  PubMed  Google Scholar 

  40. Massarelli E et al (2019) Combining immune checkpoint blockade and tumor-specific vaccine for patients with incurable human papillomavirus 16-related cancer: a phase 2 clinical trial. JAMA Oncol 5(1):67–73

    PubMed  Google Scholar 

  41. Santos PM et al (2020) Impact of checkpoint blockade on cancer vaccine-activated CD8+ T cell responses. J Exp Med 217(7):e20191369. https://doi.org/10.1084/jem.20191369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hailemichael Y et al (2018) Cancer vaccine formulation dictates synergy with CTLA‑4 and PD-L1 checkpoint blockade therapy. J Clin Invest 128(4):1338–1354

    PubMed  PubMed Central  Google Scholar 

  43. Chen DS, Mellman I (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity 39(1):1–10

    PubMed  Google Scholar 

  44. Kowalewski DJ et al (2016) Carfilzomib alters the HLA-presented peptidome of myeloma cells and impairs presentation of peptides with aromatic C‑termini. Blood Cancer J 6:e411

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Brocks D et al (2017) DNMT and HDAC inhibitors induce cryptic transcription start sites encoded in long terminal repeats. Nat Genet 49(7):1052–1060

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Srivastava P et al (2016) Induction of cancer testis antigen expression in circulating acute myeloid leukemia blasts following hypomethylating agent monotherapy. Oncotarget 7(11):12840

    PubMed  PubMed Central  Google Scholar 

  47. Laheru D et al (2008) Allogeneic granulocyte macrophage colony-stimulating factor-secreting tumor immunotherapy alone or in sequence with cyclophosphamide for metastatic pancreatic cancer: a pilot study of safety, feasibility, and immune activation. Clin Cancer Res 14(5):1455–1463

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Le DT et al (1997) Evaluation of ipilimumab in combination with allogeneic pancreatic tumor cells transfected with a GM-CSF gene in previously treated pancreatic cancer. J Immunother 36(7):382

    Google Scholar 

  49. Rocconi RP et al (2020) Randomized double-blind placebo-controlled trial of primary maintenance vigil immunotherapy (VITAL study) in stage III/IV ovarian cancer: Efficacy assessment in BRCA1/2-wt patients. 37(15):6017–6017. https://doi.org/10.1200/JCO.2020.38.15_suppl.6017

    Book  Google Scholar 

  50. Ott PA et al (2018) A personal neoantigen vaccine, NEO-PV-01, with anti-PD1 induces broad de novo anti-tumor immunity in patients with metastatic melanoma, NSCLC, and bladder cancer. Ann Oncol 29:viii400

    Google Scholar 

  51. Ott PA et al (2017) An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547(7662):217–221

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Hu Z et al (2021) Personal neoantigen vaccines induce persistent memory T cell responses and epitope spreading in patients with melanoma. Nat Med 27(3):515–525. https://doi.org/10.1038/s41591-020-01206-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Andtbacka R et al (2015) Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol 33(25):2780–2788

    CAS  PubMed  Google Scholar 

  54. Gulley JL et al (2019) Phase III trial of PROSTVAC in asymptomatic or minimally symptomatic metastatic castration-resistant prostate cancer. J Clin Oncol 37(13):1051

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Oudard S et al (2011) A phase II study of the cancer vaccine TG4010 alone and in combination with cytokines in patients with metastatic renal clear-cell carcinoma: clinical and immunological findings. Cancer Immunol Immunother 60(2):261–271

    CAS  PubMed  Google Scholar 

  56. Tosch C et al (2017) Viral based vaccine TG4010 induces broadening of specific immune response and improves outcome in advanced NSCLC. J Immunother Cancer 5(1):1–10

    Google Scholar 

  57. Rosenblatt J et al (2013) Vaccination with dendritic cell/tumor fusions following autologous stem cell transplant induces immunologic and clinical responses in multiple myeloma patients. Clin Cancer Res 19(13):3640–3648

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lacy MQ et al (2009) Idiotype-pulsed antigen presenting cells following autologous transplantation for multiple myeloma may be associated with prolonged survival. Am J Hematol 84(12):799–802

    PubMed  PubMed Central  Google Scholar 

  59. Griffiths EA et al (2018) NY-ESO‑1 vaccination in combination with decitabine induces antigen-specific T‑lymphocyte responses in patients with myelodysplastic syndrome. Clin Cancer Res 24(5):1019–1029

    CAS  PubMed  Google Scholar 

  60. Bilich T et al (2017) Definition and characterization of a peptide warehouse for the patient-individualized peptide vaccination study (iVAC-L-CLL01) after first line therapy of CLL. Blood 130(Supplement 1):5346–5346

    Google Scholar 

  61. Maslak PG et al (2018) Phase 2 trial of a multivalent WT1 peptide vaccine (galinpepimut-S) in acute myeloid leukemia. Blood Adv 2(3):224–234

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Ueda Y et al (2017) Phase 1/2 study of the WT 1 peptide cancer vaccine WT 4869 in patients with myelodysplastic syndrome. Cancer Sci 108(12):2445–2453

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliane S. Walz.

Ethics declarations

Interessenkonflikt

M. Roerden und J.S. Walz geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion:

Stephan Schmitz, Köln

Dieser Beitrag erschien zuerst in Der Onkologe 2021 · 27:1101–1108. https://doi.org/10.1007/s00761-021-01012-8

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roerden, M., Walz, J.S. Tumorimpfstoffe. best practice onkologie 16, 572–580 (2021). https://doi.org/10.1007/s11654-021-00356-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11654-021-00356-2

Schlüsselwörter

Keywords

Navigation