Bertrand P, Mufti GB (2008) Stability measures for assessing a partition and its clusters: application to symbolic data sets. In: Symbolic data analysis and the SODAS software, pp 263–278
Billard L, Diday E (2006) Symbolic data analysis: conceptual statistics and data mining. Wiley, Hoboken
Book
Google Scholar
Brito P, De Carvalho FdA (2008) Hierarchical and pyramidal clustering. In: Symbolic data analysis and the sodas software, pp 157–180
Brito P, Ichino M (2010) Symbolic clustering based on quantile representation. In: Proceedings of COMPSTAT2010, pp 22–27
Brito P, Ichino M (2011) Conceptual clustering of symbolic data using a quantile representation: discrete and continuous approaches. In: Proceeding of theory and application of high-dimensional complex and symbolic data analysis in economics and management science, pp 22–27
de Carvalho FdA, de Souza RM (2010) Unsupervised pattern recognition models for mixed feature-type symbolic data. Pattern Recogn Lett 31(5):430–443
Article
Google Scholar
De Carvalho FDA, Lechevallier Y, Verde R (2008) Clustering methods in symbolic data analysis. In: Symbolic data analysis and the sodas software, pp 181–204
Diday E, Esposito F (2003) An introduction to symbolic data analysis and the sodas software. Intell Data Anal 7(6):583–601
Article
Google Scholar
El-Sonbaty Y, Ismail MA (1998) On-line hierarchical clustering. Pattern Recogn Lett 19(14):1285–1291
Article
Google Scholar
Fisher DH (1987) Knowledge acquisition via incremental conceptual clustering. Mach Learn 2(2):139–172
Google Scholar
Goswami S, Chakrabarti A (2012) Quartile clustering: a quartile based technique for generating meaningful clusters. J Comput 4(2):48–55
Google Scholar
Guru D, Nagendraswamy H (2006) Clustering of interval-valued symbolic patterns based on mutual similarity value and the concept of k-mutual nearest neighborhood. In: Asian conference on computer vision, Springer, Berlin, pp 234–243
Hardy A, Lallemand P (2002) Determination of the number of clusters for symbolic objects described by interval variables. In: Classification, clustering, and data analysis, Springer, Berlin, pp 311–318
Hu X (1992) Conceptual clustering and concept hierarchies in knowledge discovery. Ph.D. thesis, theses (School of Computing Science)/Simon Fraser University
Hubert L (1972) Some extensions of Johnson’s hierarchical clustering algorithms. Psychometrika 37(3):261–274
MathSciNet
Article
Google Scholar
Ichino M (2008) Symbolic PCA for histogram-valued data. In: Proceedings IASC, pp 5–8
Ichino M (2011) The quantile method for symbolic principal component analysis. Stat Anal Data Min: ASA Data Sci J 4(2):184–198
MathSciNet
Article
Google Scholar
Ichino M, Britto P (2014) The data accumulation graph (DAQ) to visualize multi- dimensional symbolic data. In: Workshop in symbolic data analysis, Taipei, Taiwan
Ichino M, Brito P (2013) A hierarchical conceptual clustering based on the quantile method for mixed feature-type data. In: Proceedings of world statistics congress of the international statistical institute
Ichino M, Umbleja K (2018) Similarity and dissimilarity measures for mixed feature-type symbolic data. In: Studies in theoretical and applied statistics, Springer, Berlin, pp 131–144
Ichino M, Yaguchi H (1994) Generalized minkowski metrics for mixed feature-type data analysis. IEEE Trans Syst Man Cybern 24(4):698–708
MathSciNet
Article
Google Scholar
Irpino A, Verde R (2006) A new wasserstein based distance for the hierarchical clustering of histogram symbolic data. In: Data science and classification, Springer, Berlin, pp 185–192
Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM Comput Surv (CSUR) 31(3):264–323
Article
Google Scholar
Johnson SC (1967) Hierarchical clustering schemes. Psychometrika 32(3):241–254
Article
Google Scholar
Jonyer I, Cook DJ, Holder LB (2001) Graph-based hierarchical conceptual clustering. J Mach Learn Res 2:19–43
MATH
Google Scholar
Liu Y, Li Z, Xiong H, Gao X, Wu J (2010) Understanding of internal clustering validation measures. In: 2010 IEEE international conference on data mining, IEEE, pp 911–916
Michalski RS, Stepp RE (1983) Learning from observation: conceptual clustering. In: Machine learning, Springer, Berlin, pp 331–363
National Climatic Data Center (2014) Tables of histogram data. Climate-vegetation atlas of North America. http://www1.ncdc.noaa.gov/pub/data/cirs/drd/drd964x.tmpst.txt. Accessed 10 Aug 2015
Umbleja K (2017) Competence based learning—framework, implementation, analysis and management of learning process. Ph.D. thesis, Theses (School of Information Technologies)/Tallinn University of Technology, https://digi.lib.ttu.ee/i/?7573. Accessed 4 Oct 2018
US Geological Survey (2013) Tables of histogram data. Climate-vegetation atlas of North America. http://pubs.usgs.gov/pp/p1650-b/datatables/hgtable.xls. Accessed 24 Aug 2015
Vendramin L, Campello RJ, Hruschka ER (2010) Relative clustering validity criteria: a comparative overview. Stat Anal Data Min: ASA Data Sci J 3(4):209–235
MathSciNet
Article
Google Scholar