Skip to main content
Log in

A stochastic block model for interaction lengths

  • Regular Article
  • Published:
Advances in Data Analysis and Classification Aims and scope Submit manuscript

Abstract

We propose a new stochastic block model that focuses on the analysis of interaction lengths in dynamic networks. The model does not rely on a discretization of the time dimension and may be used to analyze networks that evolve continuously over time. The framework relies on a clustering structure on the nodes, whereby two nodes belonging to the same latent group tend to create interactions and non-interactions of similar lengths. We introduce a variational expectation–maximization algorithm to perform inference, and adapt a widely used clustering criterion to perform model choice. Finally, we validate our methodology using simulated data experiments and showing two illustrative applications concerning face-to-face interaction data and a bike sharing network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Airoldi EM, Blei DM, Fienberg SE, Xing EP (2008) Mixed membership stochastic blockmodels. J Mach Learn Res 9(Sep):1981–2014

    MATH  Google Scholar 

  • Ambroise C, Matias C (2012) New consistent and asymptotically normal parameter estimates for random-graph mixture models. J R Stat Soc Ser B (Stat Methodol) 74(1):3–35

    Article  MathSciNet  MATH  Google Scholar 

  • Baudry J, Celeux G (2015) EM for mixtures Initialization requires special care. Stat Comput 25(4):713–726

    Article  MathSciNet  MATH  Google Scholar 

  • Biernacki C, Celeux G, Govaert G (2000) Assessing a mixture model for clustering with the integrated completed likelihood. IEEE Trans Pattern Anal Mach Intell 22(7):719–725

    Article  Google Scholar 

  • Biernacki C, Celeux G, Govaert G (2003) Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models. Comput Stat Data Anal 41(3):561–575

    Article  MathSciNet  MATH  Google Scholar 

  • Blei DM, Kucukelbir A, McAuliffe JD (2017) Variational inference: a review for statisticians. J Am Stat Assoc 112(518):859–877

    Article  MathSciNet  Google Scholar 

  • Bouveyron C, Latouche P, Zreik R (2018) The stochastic topic block model for the clustering of vertices in networks with textual edges. Stat Comput 28(1):11–31

    Article  MathSciNet  MATH  Google Scholar 

  • Celisse A, Daudin JJ, Pierre L (2012) Consistency of maximum-likelihood and variational estimators in the stochastic block model. Electron J Stat 6:1847–1899

    Article  MathSciNet  MATH  Google Scholar 

  • Côme E, Latouche P (2015) Model selection and clustering in stochastic block models based on the exact integrated complete data likelihood. Stat Model 15(6):564–589

    Article  MathSciNet  Google Scholar 

  • Corneli M, Latouche P, Rossi F (2017) Multiple change points detection and clustering in dynamic networks. Stat Comput 28:1–19

    MathSciNet  MATH  Google Scholar 

  • Daudin JJ, Picard F, Robin S (2008) A mixture model for random graphs. Stat Comput 18(2):173–183

    Article  MathSciNet  Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B (Methodol) 39(1):1–38

    MathSciNet  MATH  Google Scholar 

  • Frühwirth-Schnatter S (2006) Finite mixture and Markov switching models. Springer, Berlin

    MATH  Google Scholar 

  • Hanneke S, Fu W, Xing EP (2010) Discrete temporal models of social networks. Electron J Stat 4:585–605

    Article  MathSciNet  MATH  Google Scholar 

  • Hoff PD, Raftery AE, Handcock MS (2002) Latent space approaches to social network analysis. J Am Stat Assoc 97(460):1090–1098

    Article  MathSciNet  MATH  Google Scholar 

  • Holland PW, Leinhardt S (1981) An exponential family of probability distributions for directed graphs. J Am Stat Assoc 76(373):33–50

    Article  MathSciNet  MATH  Google Scholar 

  • Hubert L, Arabie P (1985) Comparing partitions. J Classif 2(1):193–218

    Article  MATH  Google Scholar 

  • Mastrandrea R, Fournet J, Barrat A (2015) Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PLoS ONE 10(9):1–26

    Article  Google Scholar 

  • Matias C, Miele V (2017) Statistical clustering of temporal networks through a dynamic stochastic block model. J R Stat Soc Ser B (Stat Methodol) 79(4):1119–1141

    Article  MathSciNet  MATH  Google Scholar 

  • Matias C, Rebafka T, Villers F (2018) A semiparametric extension of the stochastic block model for longitudinal networks. Biometrika 105(3):665–680

    Article  MathSciNet  MATH  Google Scholar 

  • O’Hagan A, Murphy TB, Gormley IC (2012) Computational aspects of fitting mixture models via the expectation–maximization algorithm. Comput Stat Data Anal 56(12):3843–3864

    Article  MathSciNet  MATH  Google Scholar 

  • R Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna https://www.R-project.org/

  • Rastelli R (2019) Exact integrated completed likelihood maximisation in a stochastic block transition model for dynamic networks. J French Stat Soc 160(1):35–56

    MathSciNet  MATH  Google Scholar 

  • Rastelli R, Latouche P, Friel N (2018) Choosing the number of groups in a latent stochastic blockmodel for dynamic networks. Netw Sci. https://doi.org/10.1017/nws.2018.19 (to appear)

    Article  Google Scholar 

  • Sarkar P, Moore AW (2005) Dynamic social network analysis using latent space models. SIGKDD Explor Spec Ed Link Min 7:31–40

    Article  Google Scholar 

  • Scrucca L, Raftery AE (2015) Improved initialisation of model-based clustering using Gaussian hierarchical partitions. Adv Data Anal Classif 9(4):447–460

    Article  MathSciNet  MATH  Google Scholar 

  • Sewell DK, Chen Y (2015) Latent space models for dynamic networks. J Am Stat Assoc 110(512):1646–1657

    Article  MathSciNet  MATH  Google Scholar 

  • Snijders TAB (2005) Models for longitudinal network data. Models Methods Soc Netw Anal 1:215–247

    Article  Google Scholar 

  • Stephens M (2000) Dealing with label switching in mixture models. J R Stat Soc Ser B (Stat Methodol) 62(4):795–809

    Article  MathSciNet  MATH  Google Scholar 

  • Transport for London (2016) http://cycling.data.tfl.gov.uk/. Accessed 11 Oct 2019

  • Von Luxburg U (2007) A tutorial on spectral clustering. Stat Comput 17(4):395–416

    Article  MathSciNet  Google Scholar 

  • Wang YJ, Wong GY (1987) Stochastic blockmodels for directed graphs. J Am Stat Assoc 82(397):8–19

    Article  MathSciNet  MATH  Google Scholar 

  • Wu CFJ (1983) On the convergence properties of the EM algorithm. Ann Stat 11(1):95–103

    Article  MathSciNet  MATH  Google Scholar 

  • Xu K (2015) Stochastic block transition models for dynamic networks. Artif Intell Stat 38:1079–1087

    Google Scholar 

  • Yang T, Chi Y, Zhu S, Gong Y, Jin R (2011) Detecting communities and their evolutions in dynamic social networks—a Bayesian approach. Mach Learn 82(2):157–189

    Article  MathSciNet  MATH  Google Scholar 

  • Žiberna A (2007) Generalized blockmodeling of valued networks. Soc Netw 29(1):105–126

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and the anonymous referees for their valuable comments, which helped in substantially improving the quality of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Rastelli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Proof of Proposition 1

The evidence lower bound is defined as follows:

$$\begin{aligned}&\mathcal {F} = \mathbb {E}_q\left[ \log p\left( \varvec{\mathcal {E}}, \mathbf{Z} \vert \varvec{\mu }, \varvec{\nu }, \varvec{\lambda }\right) \right] + Ent(q)\\&\quad = \mathbb {E}_q\left[ \ell _{\varvec{\mathcal {E}}}\left( \varvec{\mu }, \varvec{\nu }, \mathbf{Z} \right) \right] + \mathbb {E}_q\left[ \log p\left( \mathbf{Z} \vert \varvec{\lambda }\right) \right] \\&\qquad - \mathbb {E}_q\left[ \log q\left( \mathbf{Z} \vert \varvec{\tau }\right) \right] \end{aligned}$$

We study the terms on the right hand side separately.

$$\begin{aligned}&\mathbb {E}_q\left[ \ell _{\varvec{\mathcal {E}}}\left( \varvec{\mu }, \varvec{\nu }, \mathbf{Z} \right) \right] \\&\quad = \mathbb {E}_q\left[ \sum _{g=1}^K \sum _{h=1}^K \left\{ L_{\mu _{gh}} \log \left( \mu _{gh} \right) + L_{\nu _{gh}} \log \left( \nu _{gh} \right) - \mu _{gh}\eta _{gh} - \nu _{gh}\zeta _{gh}\right\} \right] \\&\quad = \sum _{g=1}^K \sum _{h=1}^K \left\{ \mathbb {E}_q\left[ L_{\mu _{gh}}\right] \log \left( \mu _{gh} \right) + \mathbb {E}_q\left[ L_{\nu _{gh}}\right] \log \left( \nu _{gh} \right) - \mu _{gh}\mathbb {E}_q\left[ \eta _{gh}\right] - \nu _{gh}\mathbb {E}_q\left[ \zeta _{gh} \right] \right\} \\&\quad = \sum _{g=1}^K \sum _{h=1}^K \left\{ \left( \sum _{i \ne j} \tau _{ig} \tau _{jh} \mathcal {A}_{ij}^{(+)}\right) \log \left( \mu _{gh} \right) + \left( \sum _{i \ne j} \tau _{ig} \tau _{jh} \mathcal {A}_{ij}^{(-)}\right) \log \left( \nu _{gh} \right) \right. \\&\qquad - \left. \left( \sum _{i \ne j} \tau _{ig} \tau _{jh} \mathcal {X}_{ij}^{(+)}\right) \mu _{gh} - \left( \sum _{i \ne j} \tau _{ig} \tau _{jh} \mathcal {X}_{ij}^{(-)}\right) \nu _{gh} \right\} \\&\quad = \sum _{g=1}^K \sum _{h=1}^K \left\{ \bar{L}_{\mu _{gh}} \log \left( \mu _{gh} \right) + \bar{L}_{\nu _{gh}} \log \left( \nu _{gh} \right) - \mu _{gh}\bar{\eta }_{gh} - \nu _{gh}\bar{\zeta }_{gh}\right\} \\&\mathbb {E}_q\left[ \log p\left( \mathbf{Z} \vert \varvec{\lambda }\right) \right] = \mathbb {E}_q\left[ \sum _{k=1}^K\sum _{i=1}^N Z_{ik}\log \lambda _k\right] \\&\quad = \sum _{k=1}^K\sum _{i=1}^N\mathbb {E}_q\left[ Z_{ik}\right] \log \lambda _k = \sum _{k=1}^K\sum _{i=1}^N\tau _{ik}\log \lambda _k \mathbb {E}_q\left[ \log q\left( \mathbf{Z} \vert \varvec{\tau }\right) \right] \\&\quad = \mathbb {E}_q\left[ \sum _{k=1}^K\sum _{i=1}^N Z_{ik}\log \tau _{ik}\right] = \sum _{k=1}^K\sum _{i=1}^N\tau _{ik}\log \tau _{ik} \end{aligned}$$

The three parts combined give (3).

1.2 Proof of Proposition 2

The evidence lower bound can be rewritten as follows:

$$\begin{aligned} \mathcal {F}&= \sum _{g=1}^K \sum _{h=1}^K \left\{ \left( \sum _{i \ne j} \tau _{ig}\tau _{jh} \mathcal {A}_{ij}^{(+)}\right) \log \mu _{gh} + \left( \sum _{i \ne j} \tau _{ig}\tau _{jh} \mathcal {A}_{ij}^{(-)}\right) \log \nu _{gh} \right. \\&\quad \left. - \left( \sum _{i \ne j} \tau _{ig}\tau _{jh} \mathcal {X}_{ij}^{(+)}\right) \mu _{gh} - \left( \sum _{i \ne j} \tau _{ig}\tau _{jh} \mathcal {X}_{ij}^{(-)}\right) \nu _{gh} \right\} \\&\qquad + \sum _{i=1}^N \sum _{k=1}^K \tau _{ik} \log \lambda _k + \sum _{i=1}^N \sum _{k=1}^K \tau _{ik} \log \tau _{ik} \\&= \sum _{g=1}^K \sum _{h=1}^K \sum _{i \ne j} \tau _{ig}\tau _{jh} \omega _{ijgh} + \sum _{i=1}^N \sum _{k=1}^K \tau _{ik} \log \lambda _k + \sum _{i=1}^N \sum _{k=1}^K \tau _{ik} \log \tau _{ik} \end{aligned}$$

Now consider the following Lagrangian:

$$\begin{aligned} \mathcal {H} = \mathcal {F} + \sum _{i=1}^N \xi _{i} \left( \sum _{k=1}^K \tau _{ik}-1 \right) \end{aligned}$$

with multipliers \(\xi _1,\ldots ,\xi _N\). The derivative is equal to the following:

$$\begin{aligned} \frac{\partial \mathcal {H}}{\partial \tau _{\ell k}} = \sum _{j=1}^N \sum _{h=1}^K \tau _{jh} \omega _{\ell jkh} + \sum _{i=1}^N \sum _{g=1}^K \tau _{ig} \omega _{i\ell gk} + \log \lambda _k - \log \tau _{\ell k} - 1 + \xi _{\ell } \end{aligned}$$

with root:

$$\begin{aligned} \tau _{\ell k} = \exp \left\{ \sum _{j=1}^N \sum _{h=1}^K \tau _{jh} \omega _{\ell jkh} + \sum _{i=1}^N \sum _{g=1}^K \tau _{ig} \omega _{i\ell gk} + \log \lambda _k - 1 + \xi _{\ell }\right\} \end{aligned}$$
(4)

Regarding the constraints:

$$\begin{aligned} 1 = \sum _{k=1}^K \tau _{\ell k} = \exp \left\{ \xi _{\ell }\right\} \sum _{k=1}^K \exp \left\{ \sum _{j=1}^N \sum _{h=1}^K \tau _{jh} \omega _{\ell jkh} + \sum _{i=1}^N \sum _{g=1}^K \tau _{ig} \omega _{i\ell gk} + \log \lambda _k - 1\right\} \end{aligned}$$

This yields the following:

$$\begin{aligned} \xi _{\ell } = \log \sum _{k=1}^K \exp \left\{ \sum _{j=1}^N \sum _{h=1}^K \tau _{jh} \omega _{\ell jkh} + \sum _{i=1}^N \sum _{g=1}^K \tau _{ig} \omega _{i\ell gk} + \log \lambda _k - 1\right\} \end{aligned}$$

This critical point is a maximum. Using this result in (4) finishes the proof.

1.3 Proof of Proposition 3

Consider the following Lagrangian:

$$\begin{aligned} \mathcal {H} = \sum _{g=1}^K \left( \sum _{i=1}^N \tau _{ig}\right) \log \lambda _g + \xi \left( \sum _{g=1}^K \lambda _g -1\right) \end{aligned}$$

and its derivative:

$$\begin{aligned} \frac{\partial \mathcal {H}}{\partial \lambda _k} = \frac{\sum _{i=1}^N \tau _{ik}}{\lambda _k} + \xi \end{aligned}$$

This gives the root \(\lambda _k = - \sum _{i=1}^N \tau _{ik} / \xi \) and in turn:

$$\begin{aligned} \xi = -\sum _{i=1}^N \sum _{g=1}^K \tau _{ig} = -N \end{aligned}$$

which leads to the result of the proposition. This critical point is a maximum.

1.4 Proof of Proposition 4

From (3):

$$\begin{aligned} \frac{\partial \mathcal {F}}{\partial \mu _{gh}} = \frac{ \bar{L}_{\mu _{gh}} }{ \mu _{gh} } - \bar{\eta }_{gh} \end{aligned}$$

has root \(\mu _{gh} = \frac{ \bar{L}_{\mu _{gh}} }{ \bar{\eta }_{gh} }\) which corresponds to a maximum. The formula for \(\nu _{gh}\) is obtained analogously.

1.5 Proof of Proposition 5

The proof of this Proposition follows closely the proof of Proposition 8 in Daudin et al. (2008). Our model selection criterion is the exact integrated completed log-likelihood, which is defined as:

$$\begin{aligned} \log p(\varvec{\mathcal {E}},\mathbf{Z} |K) = \log p(\varvec{\mathcal {E}}|\mathbf{Z} ,K) + \log p(\mathbf{Z} |K) \end{aligned}$$
(5)

The first term on the right hand side can be calculated using a BIC-like approximation, as follows:

$$\begin{aligned} \log p(\varvec{\mathcal {E}}|\mathbf{Z} ,K)&\approx \max _{\varvec{\mu },\varvec{\nu }} \log p\left( \varvec{\mathcal {E}}\vert \mathbf{Z} , \varvec{\mu }, \varvec{\nu }\right) - \frac{1}{2}\left( 2K^2\right) \log \left( \sum _{i\ne j}W_{ij}\right) \\&\approx \log p\left( \varvec{\mathcal {E}}\vert \hat{\mathbf{Z }}, \hat{\varvec{\mu }}, \hat{\varvec{\nu }} \right) - K^2\log \left( \sum _{i\ne j}W_{ij}\right) \end{aligned}$$

where \(2K^2\) is the number of components’ parameters and \(\sum _{i\ne j}W_{ij}\) is the number of data points. The second term on the right hand side of (5) can be calculated using the same approximation proposed by Daudin et al. (2008):

$$\begin{aligned} \log p(\mathbf{Z} |K)&\approx \max _{\varvec{\lambda }} \log p\left( \hat{\mathbf{Z }} \vert \lambda \right) - \frac{K-1}{2}\log N \\&\approx \log p\left( \hat{\mathbf{Z }} \vert \hat{\lambda } \right) - \frac{K-1}{2}\log N \end{aligned}$$

Combining the two formulas gives the result in Proposition 5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rastelli, R., Fop, M. A stochastic block model for interaction lengths. Adv Data Anal Classif 14, 485–512 (2020). https://doi.org/10.1007/s11634-020-00403-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11634-020-00403-w

Keywords

Mathematics Subject Classification

Navigation