A stable cardinality distance for topological classification


This work incorporates topological features via persistence diagrams to classify point cloud data arising from materials science. Persistence diagrams are multisets summarizing the connectedness and holes of given data. A new distance on the space of persistence diagrams generates relevant input features for a classification algorithm for materials science data. This distance measures the similarity of persistence diagrams using the cost of matching points and a regularization term corresponding to cardinality differences between diagrams. Establishing stability properties of this distance provides theoretical justification for the use of the distance in comparisons of such diagrams. The classification scheme succeeds in determining the crystal structure of materials on noisy and sparse data retrieved from synthetic atom probe tomography experiments.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. Adams H, Emerson T, Kirby M, Neville R, Peterson C, Shipman P, Chepushtanova S, Hanson E, Motta F, Ziegelmeier L (2017) Persistence images: a stable vector representation of persistent homology. J Mach Learn Res 18(1):218–252

    MathSciNet  MATH  Google Scholar 

  2. Breusch TS, Pagan AR (1979) A simple test for heteroscedasticity and random coefficient variation. Econ J Econ Soc 47(5):1287–1294

    MathSciNet  MATH  Google Scholar 

  3. Bubenik P (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102

    MathSciNet  MATH  Google Scholar 

  4. Carlsson G, Zomorodian A, Collins A, Guibas LJ (2005) Persistence barcodes for shapes. Int J Shape Model 11(02):149–187

    MATH  Article  Google Scholar 

  5. Carriere M, Cuturi M, Oudot S (2017) Sliced Wasserstein kernel for persistence diagrams. In: Proceedings of the 34th international conference on machine learning-volume 70, JMLR. org, pp 664–673

  6. Chazal F, Cohen-Steiner D, Mérigot Q (2011) Geometric inference for probability measures. Found Comput Math 11(6):733–751

    MathSciNet  MATH  Article  Google Scholar 

  7. Chazal F, de Silva V, Oudot S (2014) Persistence stability for geometric complexes. Geom Dedic 173(1):193–214

    MathSciNet  MATH  Article  Google Scholar 

  8. Chisholm JA, Motherwell S (2004) A new algorithm for performing three-dimensional searches of the cambridge structural database. J Appl Crystallogr 37(2):331–334

    Article  Google Scholar 

  9. Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete Comput Geom 37(1):103–120

    MathSciNet  MATH  Article  Google Scholar 

  10. Cohen-Steiner D, Edelsbrunner H, Harer J, Mileyko Y (2010) Lipschitz functions have \({L}_p\)-stable persistence. Found Comput Math 10(2):127–139

    MathSciNet  MATH  Article  Google Scholar 

  11. Edelsbrunner H, Harer J (2010) Computational topology: an introduction. American Mathematical Society, Providence

    MATH  Google Scholar 

  12. Edelsbrunner H, Letscher D, Zomorodian A (2000) Topological persistence and simplification. In: Proceedings 41st annual symposium on foundations of computer science, 2000, IEEE, pp 454–463

  13. Efron B, Hastie T (2016) Computer age statistical inference, vol 5. Cambridge University Press, Cambridge

    MATH  Book  Google Scholar 

  14. Fasy BT, Lecci F, Rinaldo A, Wasserman L, Balakrishnan S, Singh A et al (2014) Confidence sets for persistence diagrams. Ann Stat 42(6):2301–2339

    MathSciNet  MATH  Article  Google Scholar 

  15. Gault B, Moody MP, De Geuser F, La Fontaine A, Stephenson LT, Haley D, Ringer SP (2010) Spatial resolution in atom probe tomography. Microsc Microanal 16(1):99–110

    Article  Google Scholar 

  16. Gault B, Moody MP, Cairney JM, Ringer SP (2012) Atom probe crystallography. Materials Today 15(9):378–386

    Article  Google Scholar 

  17. Goff M (2011) Extremal Betti numbers of Vietoris–Rips complexes. Discrete Comput Geom 46(1):132–155

    MathSciNet  MATH  Article  Google Scholar 

  18. Hicks D, Oses C, Gossett E, Gomez G, Taylor RH, Toher C, Mehl MJ, Levy O, Curtarolo S (2018) Aflow-sym: platform for the complete, automatic and self-consistent symmetry analysis of crystals. Acta Crystallogr Sect A Found Adv 74(3):184–203

    MathSciNet  Article  Google Scholar 

  19. Honeycutt JD, Andersen HC (1987) Molecular dynamics study of melting and freezing of small lennard-jones clusters. J Phys Chem 91(19):4950–4963

    Article  Google Scholar 

  20. Katsoulakis MA, Zabaras N (2017) Special issue: predictive multiscale materials modeling. J Comput Phys 338(1):18–20

    MathSciNet  MATH  Article  Google Scholar 

  21. Kelly TF, Miller MK, Rajan K, Ringer SP (2013) Atomic-scale tomography: a 2020 vision. Microsc Microanal 19(3):652–664

    Article  Google Scholar 

  22. Larsen PM, Schmidt S, Schiøtz J (2016) Robust structural identification via polyhedral template matching. Modell Simul Mater Sci Eng 24(5):055007

    Article  Google Scholar 

  23. Larson DJ (2013) Local electrode atom probe tomography: a user’s guide. Springer, Berlin

    Book  Google Scholar 

  24. Marchese A, Maroulas V (2016) Topological learning for acoustic signal identification. In: 2016 19th International conference on information fusion (FUSION), IEEE, pp 1377–1381

  25. Marchese A, Maroulas V (2018) Signal classification with a point process distance on the space of persistence diagrams. Adv Data Anal Classif 12(3):657–682

    MathSciNet  MATH  Article  Google Scholar 

  26. Marchese A, Maroulas V, Mike J (2017) K-means clustering on the space of persistence diagrams. In: Wavelets and sparsity XVII, International Society for Optics and Photonics, vol 10394, p 103940W

  27. Maroulas V, Mike JL, Oballe C (2019) Nonparametric estimation of probability density functions of random persistence diagrams. J Mach Learn Res 20(151):1–49

    MathSciNet  MATH  Google Scholar 

  28. Maroulas V, Nasrin F, Oballe C (2019) A bayesian framework for persistent homology. SIAM J Math Data Sci Appear. arXiv:1901.02034

  29. McNutt NW, Rios O, Maroulas V, Keffer DJ (2017) Interfacial Li-ion localization in hierarchical carbon anodes. Carbon 111:828–834

    Article  Google Scholar 

  30. Miller MK (2014) Atom-probe tomography: the local electrode atom probe. Springer, Berlin

  31. Miller MK, Kelly TF, Rajan K, Ringer SP (2012) The future of atom probe tomography. Mater Today 15(4):158–165

    Article  Google Scholar 

  32. Moody MP, Gault B, Stephenson LT, Marceau RK, Powles RC, Ceguerra AV, Breen AJ, Ringer SP (2011) Lattice rectification in atom probe tomography: toward true three-dimensional atomic microscopy. Microsc Microanal 17(2):226–239

    Article  Google Scholar 

  33. Pfender F, Ziegler GM (2004) Kissing numbers, sphere packings, and some unexpected proofs. Not Am Math Soc 51:873–883

    MathSciNet  MATH  Google Scholar 

  34. Rost CM, Sachet E, Borman T, Moballegh A, Dickey EC, Hou D, Jones JL, Curtarolo S, Maria JP (2015) Entropy-stabilized oxides. Nat Commun 6:8485

    Article  Google Scholar 

  35. Santodonato LJ, Zhang Y, Feygenson M, Parish CM, Gao MC, Weber RJ, Neuefeind JC, Tang Z, Liaw PK (2015) Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy. Nat Commun 6:5964

    Article  Google Scholar 

  36. Spannaus A, Maroulas V, Keffer DJ, Law KJH (2019) Bayesian point set registration. In: 2017 MATRIX Annals, Springer, pp 99–120

  37. Togo A, Tanaka I (2018) Spglib : a software library for crystal symmetry search. arXiv:1808.01590

  38. Wasserman L (2018) Topological data analysis. Annu Rev Stat Appl 5:501–532

    MathSciNet  Article  Google Scholar 

  39. Zhang Y, Zuo TT, Tang Z, Gao MC, Dahmen KA, Liaw PK, Lu ZP (2014) Microstructures and properties of high-entropy alloys. Prog Mater Sci 61:1–93

    Article  Google Scholar 

  40. Ziletti A, Kumar D, Scheffler M, Ghiringhelli LM (2018) Insightful classification of crystal structures using deep learning. Nat Commun 9(1):2775

    Article  Google Scholar 

  41. Zomorodian A, Carlsson G (2005) Computing persistent homology. Discrete Comput Geom 33(2):249–274

    MathSciNet  MATH  Article  Google Scholar 

Download references


The authors would like to thank the anonymous associate editor and two anonymous reviewers for their insightful comments which substantially improved the manuscript. Moreover, the authors would like to thank Professor David J. Keffer (Department of Materials Science and Engineering at The University of Tennessee) for providing the codes which create the realistic APT datasets and for useful discussions, as well as Professor Kody J.H. Law (School of Mathematics at the University of Manchester) for insightful discussions.

Author information



Corresponding author

Correspondence to Vasileios Maroulas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work has been partially supported by the ARO Grant # W911NF-17-1-0313, the NSF DMS-1821241, and UTK 2019 Research Seed Funding-Interdisciplinary.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maroulas, V., Micucci, C.P. & Spannaus, A. A stable cardinality distance for topological classification. Adv Data Anal Classif 14, 611–628 (2020). https://doi.org/10.1007/s11634-019-00378-3

Download citation


  • Stability
  • Classification
  • Persistent homology
  • Persistence diagrams
  • Crystal structure of materials

Mathematics Subject Classification

  • 62H30
  • 62P30
  • 55N99
  • 54H99