D-trace estimation of a precision matrix using adaptive Lasso penalties

  • Vahe Avagyan
  • Andrés M. Alonso
  • Francisco J. Nogales
Regular Article

DOI: 10.1007/s11634-016-0272-8

Cite this article as:
Avagyan, V., Alonso, A.M. & Nogales, F.J. Adv Data Anal Classif (2016). doi:10.1007/s11634-016-0272-8
  • 155 Downloads

Abstract

The accurate estimation of a precision matrix plays a crucial role in the current age of high-dimensional data explosion. To deal with this problem, one of the prominent and commonly used techniques is the \(\ell _1\) norm (Lasso) penalization for a given loss function. This approach guarantees the sparsity of the precision matrix estimate for properly selected penalty parameters. However, the \(\ell _1\) norm penalization often fails to control the bias of obtained estimator because of its overestimation behavior. In this paper, we introduce two adaptive extensions of the recently proposed \(\ell _1\) norm penalized D-trace loss minimization method. They aim at reducing the produced bias in the estimator. Extensive numerical results, using both simulated and real datasets, show the advantage of our proposed estimators.

Keywords

Adaptive thresholding D-trace loss Gaussian graphical model Gene expression data High-dimensionality 

Mathematics Subject Classification

62H30 Classification and discrimination; cluster analysis 62J10 Analysis of variance and covariance 65S05 Graphical methods 

Funding information

Funder NameGrant NumberFunding Note
CICYT
  • ECO2012-38442
  • ECO2015-66593
Gobierno de España
  • MTM2013-44902-P
  • MTM2013-44902-P

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Vahe Avagyan
    • 1
    • 2
  • Andrés M. Alonso
    • 2
  • Francisco J. Nogales
    • 3
  1. 1.Department of Applied Mathematics, Computer Science and StatisticsGhent UniversityGhentBelgium
  2. 2.Department of StatisticsUniversidad Carlos III de MadridGetafeSpain
  3. 3.Department of StatisticsUniversidad Carlos III de MadridLeganesSpain

Personalised recommendations