Skip to main content
Log in

Convex ordering criteria for Lévy processes

  • Regular Article
  • Published:
Advances in Data Analysis and Classification Aims and scope Submit manuscript

Abstract

Modelling financial and insurance time series with Lévy processes or with exponential Lévy processes is a relevant actual practice and an active area of research. It allows qualitatively and quantitatively good adaptation to the empirical statistical properties of asset returns. Due to model incompleteness it is a problem of considerable interest to determine the dependence of option prices in these models on the choice of pricing measures and to establish nontrivial price bounds. In this paper we review and extend ordering results of stochastic and convex type for this class of models. We also extend the ordering results to processes with independent increments (PII) and present several examples and applications as to α-stable processes, NIG-processes, GH-distributions, and others. Criteria are given for the Lévy measures which imply corresponding comparison results for European type options in (exponential) Lévy models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barndorff-Nielsen O (1998) Processes of normal inverse Gaussian type. Financ Stoch 2:41–68

    Article  MATH  MathSciNet  Google Scholar 

  • Barndorff-Nielsen OE (1977) Exponentially decreasing distributions for the logarithm of particle size. Proc R Soc Lond Ser A 353:401–419

    Article  Google Scholar 

  • Bellamy N, Jeanblanc MA (2000) Incompleteness of markets driven by a mixed diffusion. Financ Stoch 4:209–222

    Article  MATH  MathSciNet  Google Scholar 

  • Bergenthum J (2005) Comparison of semimartingales and Lévy processes with applications to finanical mathematics. PhD thesis, University of Freiburg

  • Bergenthum J, Rüschendorf L (2006) Comparison of option prices in semimartingale models. Financ Stoch 10(2):222–249

    Article  MATH  Google Scholar 

  • Bergenthum J, Rüschendorf L (2007) Comparison of semimartingales and Lévy processes. Ann Probab 35:228–254

    Article  MATH  MathSciNet  Google Scholar 

  • Carr P, Geman H, Madan DB, Yor M (2003) Stochastic volatility of Lévy processes. Math Financ 13:345–382

    Article  MATH  MathSciNet  Google Scholar 

  • Cont R, Tankov P (2004) Financial modelling with jump processes. Chapman and Hall/CRC Financial Mathematics Series, London

    MATH  Google Scholar 

  • Delbaen F, Haezendonck J (1989) A martingale approach to premium calculation principles in an arbitrage free market. Insur Math Econ 8:269–277

    Article  MATH  MathSciNet  Google Scholar 

  • Eberlein E, Keller U (1995) Hyperbolic distributions in finance. Bernoulli 1(3):281–299

    Article  MATH  Google Scholar 

  • El Karoui N, Jeanblanc-Picqué M, Shreve SE (1998) Robustness of the black and scholes formula. Math Financ 8(2):93–126

    Article  MATH  Google Scholar 

  • Embrechts P (2000) Actuarial versus financial pricing of insurance. Risk Financ 1(4):17–26

    Google Scholar 

  • Goll T, Rüschendorf L (2001) Minimax and minimal distance martingale measures and their relationship to portfolio optimization. Financ Stoch 5:557–581

    Article  MATH  Google Scholar 

  • Gushchin AA, Mordecki E (2002) Bounds for option prices in the semimartingale market models. In: Proceedings of the Steklov Mathematical Institute, vol 237, pp 73–113

  • Henderson V, Hobson D (2003) Coupling and option price comparisons in a jump diffusion model. Stoch Stoch Rep 75(3):79–101

    Article  MathSciNet  Google Scholar 

  • Hobson D (1998) Volatility misspecification, option pricing and superreplication via coupling. Ann Appl Probab 8(1):193–205

    Article  MATH  MathSciNet  Google Scholar 

  • Jacod J, Shiryaev AN (2003) Limit theorems for stochastic processes. Springer, Heidelberg

    MATH  Google Scholar 

  • Karlin S, Novikoff A (1963) Generalized convex inequalities. Pac J Math 13:1251–1279

    MATH  MathSciNet  Google Scholar 

  • Madan D, Seneta E (1990) The vg model for share market returns. J Bus 63:511–524

    Article  Google Scholar 

  • Mandelbrot B (1960) The Pareto–Lévy law and the distribution of income. Int Econ Rev 1:79–106

    Article  MATH  Google Scholar 

  • Merton RC (1976) Option pricing when underlying stock returns are discontinuous. J Financ Econ 3:125–144

    Article  MATH  Google Scholar 

  • Møller T (2002) On valuation and risk management at the interface of insurance and finance. Br Actuar J 8(IV):787–827

    Google Scholar 

  • Møller T (2004) Stochastic orders in dynamic reinsurance markets. Financ Stoch 8(4):479–499

    Article  MATH  Google Scholar 

  • Müller A, Stoyan D (2002) Comparison methods for stochastic models and risks. Wiley, London

    MATH  Google Scholar 

  • Norberg R (1993) Prediction of outstanding liabilities in non-life insurance. ASTIN Bull 23(1):95–115

    Article  Google Scholar 

  • Rachev S, Mittnik S (2000) Stable Paretian models in finance. Wiley, London

    MATH  Google Scholar 

  • Sato K-I (1999) Lévy processes and infinitely divisible distributions. Cambridge Studies in Advanced Mathematics, vol 68. Cambridge University Press, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludger Rüschendorf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergenthum, J., Rüschendorf, L. Convex ordering criteria for Lévy processes. ADAC 1, 143–173 (2007). https://doi.org/10.1007/s11634-007-0008-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11634-007-0008-x

Keywords

JEL Classification

Navigation