Skip to main content

Advertisement

SpringerLink
  • Machine Intelligence Research
  • Journal Aims and Scope
  • Submit to this journal
Brain-inspired Intelligent Robotics: Theoretical Analysis and Systematic Application
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Improving performance of robots using human-inspired approaches: a survey

21 November 2022

Hong Qiao, Shanlin Zhong, … Hongze Wang

Robotics: Science preceding science fiction

01 April 2019

Hortense Le Ferrand

Task-oriented Hierarchical Control of Modular Soft Robots with External Vision Guidance

16 February 2022

Xin Sui, Tianjiao Zheng, … Yanhe Zhu

Current Researches and Future Development Trend of Intelligent Robot: A Review

17 April 2018

Tian-Miao Wang, Yong Tao & Hui Liu

A review of motor neural system robotic modeling approaches and instruments

18 January 2022

Alexander S. Migalev, Kristina D. Vigasina & Pavel M. Gotovtsev

Bio-inspired robotic impedance adaptation for human-robot collaborative tasks

26 May 2020

Chao Zeng, Chenguang Yang & Zhaopeng Chen

Intelligent control of robotic manipulators: a comprehensive review

23 December 2022

Devendra Rawat, Mukul Kumar Gupta & Abhinav Sharma

Software for Small-scale Robotics: A Review

06 July 2018

Tobias Tiemerding & Sergej Fatikow

A Rhythmic Activation Mechanism for Soft Multi-legged Robots

26 March 2021

Rafaela Aparecida Garcia Sampaio, Fabrício Lopes e Silva, … Felipe Maia Galvão França

Download PDF
  • Review
  • Open Access
  • Published: 10 January 2023

Brain-inspired Intelligent Robotics: Theoretical Analysis and Systematic Application

  • Hong Qiao  ORCID: orcid.org/0000-0001-6384-36871,2,3,
  • Ya-Xiong Wu  ORCID: orcid.org/0000-0001-5340-19221,4,
  • Shan-Lin Zhong1,2,
  • Pei-Jie Yin1 &
  • …
  • Jia-Hao Chen1,2 

Machine Intelligence Research volume 20, pages 1–18 (2023)Cite this article

  • 556 Accesses

  • 1 Altmetric

  • Metrics details

Abstract

Traditional joint-link robots have been widely used in production lines because of their high precision for single tasks. With the development of the manufacturing and service industries, the requirement for the comprehensive performance of robotics is growing. Numerous types of bio-inspired robotics have been investigated to realize human-like motion control and manipulation. A study route from inner mechanisms to external structures is proposed to imitate humans and animals better. With this idea, a brain-inspired intelligent robotic system is constructed that contains visual cognition, decision-making, motion control, and musculoskeletal structures. This paper reviews cutting-edge research in brain-inspired visual cognition, decision-making, motion control, and musculoskeletal systems. Two software systems and a corresponding hardware system are established, aiming at the verification and applications of next-generation brain-inspired musculoskeletal robots.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. H. Qiao, P. J. Yin, R. Li, P. Wang. What is the meaning for the interdisciplinary research of robot and neuroscience? — Thoughts on the future development of intelligent robot. Bulletin of Chinese Academy of Sciences, vol. 30, no. 6, pp. 762–771, 2015. DOI: https://doi.org/10.16418/j.issn.1000-3045.2015.06.007. (in Chinese)

    Google Scholar 

  2. Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki, K. Fujimura. The intelligent ASIMO: System overview and integration. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Lausanne, Switzerland, pp. 2478–2483, 2002. DOI: https://doi.org/10.1109/IRDS.2002.1041641.

    Chapter  Google Scholar 

  3. Q. Huang, K. Yokoi, S. Kajita, K. Kaneko, H. Arai, N. Koyachi, K. Tanie. Planning walking patterns for a biped robot. IEEE Transactions on Robotics and Automation, vol. 17, no. 3, pp. 280–289, 2001. DOI: https://doi.org/10.1109/70.938385.

    Article  Google Scholar 

  4. Q. Huang, G. G. Dong, Z. G. Yu, X. G. Chen, Q. Q. Li, H. Z. Chen, H. X. Liu. Resistant compliance control for biped robot inspired by humanlike behavior. IEEE/ASME Transactions on Mechatronics, vol. 27, no. 5, pp. 3463–3473, 2022. DOI: https://doi.org/10.1109/TMECH.2021.3139332.

    Article  Google Scholar 

  5. G. Metta, L. Natale, F. Nori, G. Sandini, D. Vernon, L. Fadiga, C. Von Hofsten, K. Rosander, M. Lopes, J. Santos-Victor, A. Bernardino, L. Montesano. The iCub humanoid robot: An open-systems platform for research in cognitive development. Neural Networks, vol. 23, no. 8–9, pp. 1125–1134, 2010. DOI: https://doi.org/10.1016/j.neunet.2010.08.010.

    Article  Google Scholar 

  6. S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. K. Dai, F. Permenter, T. Koolen, P. Marion, R. Tedrake. Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot. Autonomous Robots, vol. 40, no. 3, pp. 429–455, 2016. DOI: https://doi.org/10.1007/s10514-015-9479-3.

    Article  Google Scholar 

  7. M. Vukobratovic, A. A. Frank, D. Juricic. On the stability of biped locomotion. IEEE Transactions on Biomedical Engineering, vol. BME-17, no. 1, pp. 25–36, 1970. DOI: https://doi.org/10.1109/TBME.1970.4502681.

    Article  Google Scholar 

  8. C. L. Fu, K. Chen. Gait synthesis and sensory control of stair climbing for a humanoid robot. IEEE Transactions on Industrial Electronics, vol. 55, no. 5, pp. 2111–2120, 2008. DOI: https://doi.org/10.1109/TIE.2008.921205.

    Article  Google Scholar 

  9. M. Vukobratović, B. Borovac. Zero-moment point-thirty five years of its life. International Journal of Humanoid Robotics, vol. 1, no. 1, pp. 157–173, 2004. DOI: https://doi.org/10.1142/S0219843604000083.

    Article  Google Scholar 

  10. J. Pratt, J. Carff, S. Drakunov, A. Goswami. Capture point: A step toward humanoid push recovery. In Proceedings of the 6th IEEE-RAS International Conference on Humanoid Robots, IEEE, Genova, Italy, pp. 200–207, 2006. DOI: https://doi.org/10.1109/ICHR.2006.321385.

    Google Scholar 

  11. T. Koolen, T. De Boer, J. Rebula, A. Goswami, J. Pratt. Capturability-based analysis and control of legged locomotion, Part 1: Theory and application to three simple gait models. International Journal of Robotics Research, vol. 31, no. 9, pp. 1094–1113, 2012. DOI: https://doi.org/10.1177/0278364912452673.

    Article  Google Scholar 

  12. J. Pratt, T. Koolen, T. De Boer, J. Rebula, S. Cotton, J. Carff, M. Johnson, P. Neuhaus. Capturability-based analysis and control of legged locomotion, Part 2: Application to M2V2, a lower-body humanoid. International Journal of Robotics Research, vol. 31, no. 10, pp. 1117–1133, 2012. DOI: https://doi.org/10.1177/0278364912452762.

    Article  Google Scholar 

  13. M. Thor, T. Kulvicius, P. Manoonpong. Generic neural locomotion control framework for legged robots. IEEE Transactions on Neural Networks and Learning Systems, vol. 32, no. 9, pp. 4013–4025, 2021. DOI: https://doi.org/10.1109/TNNLS.2020.3016523.

    Article  Google Scholar 

  14. A. Miguel-Blanco, P. Manoonpong. General distributed neural control and sensory adaptation for self-organized locomotion and fast adaptation to damage of walking robots. Frontiers in Neural Circuits, vol. 14, Article number 46, 2020. DOI: https://doi.org/10.3389/fncir.2020.00046.

  15. S. Levine, C. Finn, T. Darrell, P. Abbeel. End-to-end training of deep visuomotor policies. Journal of Machine Learning Research, vol. 17, no. 1, pp. 1334–1373, 2016. DOI: https://doi.org/10.5555/2946645.2946684.

    MathSciNet  MATH  Google Scholar 

  16. F. Zhang, Y. Demiris. Learning garment manipulation policies toward robot-assisted dressing. Science Robotics, vol. 7, no. 65, Article number eabm6010, 2022. DOI: https://doi.org/10.1126/scirobotics.abm6010.

  17. J. Silvério, S. Calinon, L. Rozo, D. J. Caldwell. Learning task priorities from demonstrations. IEEE Transactions on Robotics, vol. 35, no. 1, pp. 78–94, 2019. DOI: https://doi.org/10.1109/TRO.2018.2878355.

    Article  Google Scholar 

  18. B. Fang, S. D. Jia, D. Guo, M. H. Xu, S. H. Wen, F. C. Sun. Survey of imitation learning for robotic manipulation. International Journal of Intelligent Robotics and Applications, vol. 3, no. 4, pp. 362–369, 2019. DOI: https://doi.org/10.1007/s41315-019-00103-5.

    Article  Google Scholar 

  19. H. Qiao, J. H. Chen, X. Huang. A survey of brain-inspired intelligent robots: Integration of vision, decision, motion control, and musculoskeletal systems. IEEE Transactions on Cybernetics, vol. 52, no. 10, pp. 11267–11280, 2022. DOI: https://doi.org/10.1109/TCYB.2021.3071312.

    Article  Google Scholar 

  20. X. Y. Xi, P. J. Yin, H. Qiao, Y. L. Li, W. S. Feng. A biologically inspired model mimicking the memory and two distinct pathways of face perception. Neurocomputing, vol. 205, pp. 349–359, 2016. DOI: https://doi.org/10.1016/j.neucom.2016.04.032.

    Article  Google Scholar 

  21. H. Qiao, Y. L. Li, T. Tang, P. Wang. Introducing memory and association mechanism into a biologically inspired visual model. IEEE Transactions on Cybernetics, vol. 44, no. 9, pp. 1485–1496, 2014. DOI: https://doi.org/10.1109/TCYB.2013.2287014.

    Article  Google Scholar 

  22. H. Qiao, Y. L. Li, F. F. Li, X. Y. Xi, W. Wu. Biologically inspired model for visual cognition achieving unsupervised episodic and semantic feature learning. IEEE Transactions on Cybernetics, vol. 46, no. 10, pp. 2335–2347, 2016. DOI: https://doi.org/10.1109/TCYB.2015.2476706.

    Article  Google Scholar 

  23. H. Qiao, X. Y. Xi, Y. L. Li, W. Wu, F. F. Li. Biologically inspired visual model with preliminary cognition and active attention adjustment. IEEE Transactions on Cybernetics, vol. 45, no. 11, pp. 2612–2624, 2015. DOI: https://doi.org/10.1109/TCYB.2014.2377196.

    Article  Google Scholar 

  24. P. J. Yin, H. Qiao, W. Wu, L. Qi, Y. L. Li, S. L. Zhong, B. Zhang. A novel biologically inspired visual cognition model: Automatic extraction of semantics, formation of integrated concepts, and reselection features for ambiguity. IEEE Transactions on Cognitive and Developmental Systems, vol. 10, no. 2, pp. 420–431, 2018. DOI: https://doi.org/10.1109/TCDS.2017.2749978.

    Article  Google Scholar 

  25. J. Pei, L. Deng, S. Song, M. G. Zhao, Y. H. Zhang, S. Wu, G. R. Wang, Z. Zou, Z. Z. Wu, W. He, F. Chen, N. Deng, S. Wu, Y. Wang, Y. J. Wu, Z. Y. Yang, C. Ma, G. Q. Li, W. T. Han, H. L. Li, H. Q. Wu, R. Zhao, Y. Xie, L. P. Shi. Towards artificial general intelligence with hybrid Tianjic chip architecture. Nature, vol. 572, no. 7767, pp. 106–111, 2019. DOI: https://doi.org/10.1038/s41586-019-1424-8.

    Article  Google Scholar 

  26. C. Wang, S. J. Liang, C. Y. Wang, Z. Z. Yang, Y. M. Ge, C. Pan, X. Shen, W. Wei, Y. C. Zhao, Z. C. Zhang, B. Cheng, C. Zhang, F. Miao. Scalable massively parallel computing using continuous-time data representation in nanoscale crossbar array. Nature Nanotechnology, vol. 16, no. 10, pp. 1079–1085, 2021. DOI: https://doi.org/10.1038/S41565-021-00943-Y.

    Article  Google Scholar 

  27. S. Wittmeier, C. Alessandro, N. Bascarevic, K. Dalamagkidis, D. Devereux, A. Diamond, M. Jäntsch, K. Jovanovic, R. Knight, H. G. Marques, P. Milosavljevic, B. Mitra, B. Svetozarevic, V. Potkonjak, R. Pfeifer, A. Knoll, O. Holland. Toward anthropomimetic robotics: Development, simulation, and control of a musculoskeletal torso. Artificial Life, vol. 19, no. 1, pp. 171–193, 2013. DOI: https://doi.org/10.1162/ARTL_a_00088.

    Article  Google Scholar 

  28. Y. Asano, K. Okada, M. Inaba. Design principles of a human mimetic humanoid: Humanoid platform to study human intelligence and internal body system. Science Robotics, vol. 2, no. 13, Article number eaaq0899, 2017. DOI: https://doi.org/10.1126/scirobotics.aaq0899.

  29. S. L. Zhong, J. H. Chen, X. Y. Niu, H. Fu, H. Qiao. Reducing redundancy of musculoskeletal robot with convex hull vertexes selection. IEEE Transactions on Cognitive and Developmental Systems, vol. 12, no. 3, pp. 601–617, 2020. DOI: https://doi.org/10.1109/TCDS.2019.2953642.

    Article  Google Scholar 

  30. Z. J. Li, K. K. Zhao, L. B. Zhang, X. Y. Wu, T. Zhang, Q. J. Li, X. Li, C. Y. Su. Human-in-the-loop control of a wearable lower limb exoskeleton for stable dynamic walking. IEEE/ASME Transactions on Mechatronics, vol. 26, no. 5, pp. 2700–2711, 2021. DOI: https://doi.org/10.1109/TMECH.2020.3044289.

    Article  Google Scholar 

  31. Z. J. Li, C. J. Deng, K. K. Zhao. Human-cooperative control of a wearable walking exoskeleton for enhancing climbing stair activities. IEEE Transactions on Industrial Electronics, vol. 67, no. 4, pp. 3086–3095, 2020. DOI: https://doi.org/10.1109/TIE.2019.2914573.

    Article  Google Scholar 

  32. X. Y. Wu, Z. J. Li. Cooperative manipulation of wearable dual-arm exoskeletons using force communication between partners. IEEE Transactions on Industrial Electronics, vol. 67, no. 8, pp. 6629–6638, 2020. DOI: https://doi.org/10.1109/tie.2019.2937036.

    Article  Google Scholar 

  33. Z. J. Li, C. C. Xu, Q. Wei, C. Shi, C. Y. Su. Human-inspired control of dual-arm exoskeleton robots with force and impedance adaptation. IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 50, no. 12, pp. 5296–5305, 2020. DOI: https://doi.org/10.1109/tsmc.2018.2871196.

    Article  Google Scholar 

  34. G. X. Li, Z. J. Li, Z. Kan. Assimilation control of a robotic exoskeleton for physical human-robot interaction. IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 2977–2984, 2022. DOI: https://doi.org/10.1109/LRA.2022.3144537.

    Article  Google Scholar 

  35. J. J. Li, Z. J. Li, F. Chen, A. Bicchi, Y. Sun, T. Fukuda. Combined sensing, cognition, learning, and control for developing future neuro-robotics systems: A survey. IEEE Transactions on Cognitive and Developmental Systems, vol. 11, no. 2, pp. 148–161, 2019. DOI: https://doi.org/10.1109/TCDS.2019.2897618.

    Article  Google Scholar 

  36. M. Donk, W. Van Zoest. Effects of salience are short-lived. Psychological Science, vol. 19, no. 7, pp. 733–739, 2008. DOI: https://doi.org/10.1111/j.1467-9280.2008.02149.x.

    Article  Google Scholar 

  37. L. Itti, C. Koch. Computational modelling of visual attention. Nature Reviews Neuroscience, vol. 2, no. 3, pp. 194–203, 2001. DOI: https://doi.org/10.1038/35058500.

    Article  Google Scholar 

  38. D. M. Beck, S. Kastner. Stimulus context modulates competition in human extrastriate cortex. Nature Neuroscience, vol. 8, no. 8, pp. 1110–1116, 2005. DOI: https://doi.org/10.1038/nn1501.

    Article  Google Scholar 

  39. T. Töllner, M. Zehetleitner, K. Gramann, H. J. Müller. Stimulus saliency modulates pre-attentive processing speed in human visual cortex. PLoS One, vol. 6, no. 1, Article number e16276, 2011. DOI: https://doi.org/10.1371/journal.pone.0016276.

  40. T. Töllner, M. Zehetleitner, J. Krummenacher, H. J. Müller. Perceptual basis of redundancy gains in visual pop-out search. Journal of Cognitive Neuroscience, vol. 23, no. 1, pp. 137–150, 2011. DOI: https://doi.org/10.1162/jocn.2010.21422.

    Article  Google Scholar 

  41. E. Rosch. Principles of categorization. Concepts: Core Readings, E. Margolis, S. Laurence, Eds., Cambridge, USA: MIT Press, pp. 189–206, 1999.

    Google Scholar 

  42. K. Grill-Spector, N. Kanwisher. Visual recognition: As soon as you know it is there, you know what it is. Psychological Science, vol. 16, no. 2, pp. 152–160, 2005. DOI: https://doi.org/10.1111/j.0956-7976.2005.00796.X.

    Article  Google Scholar 

  43. K. Grill-Spector, N. Kanwisher. The functional organization of human ventral temporal cortex is based on stimulus selectivity, not recognition task. Soc Neurosci Abs, vol. 122, Article number 10, 2001.

  44. C. Keysers, D. K. Xiao, P. Földiák, D. I. Perrett. The speed of sight. Journal of Cognitive Neuroscience, vol. 13, no. 1, pp. 90–101, 2001. DOI: https://doi.org/10.1162/089892901564199.

    Article  Google Scholar 

  45. L. K. Tyler, S. Chiu, J. Zhuang, B. Randall, B. J. Devereux, P. Wright, A. Clarke, K. I. Taylor. Objects and categories: Feature statistics and object processing in the ventral stream. Journal of Cognitive Neuroscience, vol. 25, no. 10, pp. 1723–1735, 2013. DOI: https://doi.org/10.1162/jocn_a_00419.

    Article  Google Scholar 

  46. M. Spiridon, B. Fischl, N. Kanwisher. Location and spatial profile of category-specific regions in human extrastriate cortex. Human Brain Mapping, vol. 27, no. 1, pp. 77–89, 2006. DOI: https://doi.org/10.1002/hbm.20169.

    Article  Google Scholar 

  47. L. T. McIntosh, N. Maheswaranathan, A. Nayebi, S. Ganguli, S. A. Baccus. Deep learning models of the retinal response to natural scenes. In Proceedings of the 30th International Conference on Neural Information Processing Systems, ACM, Barcelona, Spain, pp. 1369–1377, 2016. DOI: https://doi.org/10.5555/3157096.3157249.

    Google Scholar 

  48. D. A. Klindt, A. S. Ecker, T. Euler, M. Bethge. Neural system identification for large populations separating what and where. In Proceedings of the 31st International Conference on Neural Information Processing Systems, ACM, Long Beach, USA, pp. 3506–3516, 2017. DOI: https://doi.org/10.5555/3294996.3295109.

    Google Scholar 

  49. M. Riesenhuber, T. Poggio. Hierarchical models of object recognition in cortex. Nature Neuroscience, vol. 2, no. 11, pp. 1019–1025, 1999. DOI: https://doi.org/10.1038/14819.

    Article  Google Scholar 

  50. G. Azzopardi, A. Rodríguez-Sánchez, J. Piater, N. Petkov. A push-pull CORF model of a simple cell with antiphase inhibition improves SNR and contour detection. PLoS One, vol. 9, no. 7, Article number e98424, 2014. DOI: https://doi.org/10.1371/journal.pone.0098424.

  51. T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, T. Poggio. Robust object recognition with cortex-like mechanisms. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 3, pp. 411–426, 2007. DOI: https://doi.org/10.1109/TPAMI.2007.56.

    Article  Google Scholar 

  52. S. Dura-Bernal, T. Wennekers, S. L. Denham. Top-down feedback in an HMAX-like cortical model of object perception based on hierarchical Bayesian networks and belief propagation. PLoS One, vol. 7, no. 11, Article number e48216, 2012. DOI: https://doi.org/10.1371/journal.pone.0048216.

  53. C. Liu, F. C. Sun. HMAX model: A survey. In Proceedings of the International Joint Conference on Neural Networks, IEEE, Killarney, Ireland, 2015. DOI: https://doi.org/10.1109/IJCNN.2015.7280677.

    Google Scholar 

  54. Y. L. Li, W. Wu, B. Zhang, F. F. Li. Enhanced HMAX model with feedforward feature learning for multiclass categorization. Frontiers in Computational Neuroscience, vol. 9, Article number 123, 2015. DOI: https://doi.org/10.3389/fncom.2015.00123.

  55. E. T. Rolls. Invariant visual object and face recognition: Neural and computational bases, and a model, VisNet. Frontiers in Computational Neuroscience, vol. 6, Article number 35, 2012. DOI: https://doi.org/10.3389/fncom.2012.00035.

  56. K. Benchenane, A. Peyrache, M. Khamassi, P. L. Tierney, Y. Gioanni, F. P. Battaglia, S. I. Wiener. Coherent theta oscillations and reorganization of spike timing in the hippocampal-prefrontal network upon learning. Neuron, vol. 66, no. 6, pp. 921–936, 2010. DOI: https://doi.org/10.1016/j.neuron.2010.05.013.

    Article  Google Scholar 

  57. D. Kumaran, J. J. Summerfield, D. Hassabis, E. A. Maguire. Tracking the emergence of conceptual knowledge during human decision making. Neuron, vol. 63, no. 6, pp. 889–901, 2009. DOI: https://doi.org/10.1016/j.neuron.2009.07.030.

    Article  Google Scholar 

  58. M. T. R. Van Kesteren, G. Fernández, D. G. Norris, E. J. Hermans. Persistent schema-dependent hippocampal-neocortical connectivity during memory encoding and postencoding rest in humans. Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 16, pp. 7550–7555, 2010. DOI: https://doi.org/10.1073/pnas.0914892107.

    Article  Google Scholar 

  59. A. Pasupathy, C. E. Connor. Shape representation in area v4: Position-specific tuning for boundary conformation. Journal of Neurophysiology, vol. 86, no. 5, pp. 2505–2519, 2001. DOI: https://doi.org/10.1152/jn.2001.86.5.2505.

    Article  Google Scholar 

  60. A. E. Green, M. R. Munafò, C. G. DeYoung, J. A. Fossella, J. Fan, J. R. Gray. Using genetic data in cognitive neuroscience: From growing pains to genuine insights. Nature Reviews Neuroscience, vol. 9, no. 9, pp. 710–720, 2008. DOI: https://doi.org/10.1038/nrn2461.

    Article  Google Scholar 

  61. A. Martin, L. L. Chao. Semantic memory and the brain: Structure and processes. Current Opinion in Neurobiology, vol. 11, no. 2, pp. 194–201, 2001. DOI: https://doi.org/10.1016/S0959-4388(00)00196-3.

    Article  Google Scholar 

  62. M. W. Brown, J. P. Aggleton. Recognition memory: What are the roles of the perirhinal cortex and hippocampus? Nature Reviews Neuroscience, vol. 2, no. 1, pp. 51–61, 2001. DOI: https://doi.org/10.1038/35049064.

    Article  Google Scholar 

  63. L. R. Squire, J. T. Wixted, R. E. Clark. Recognition memory and the medial temporal lobe: A new perspective. Nature Reviews Neuroscience, vol. 8, no. 11, pp. 872–883, 2007. DOI: https://doi.org/10.1038/nrn2154.

    Article  Google Scholar 

  64. M. Scheutz. Useful roles of emotions in artificial agents: A case study from artificial life. In Proceedings of the 19th National Conference on Artificial Intelligence, ACM, San Jose, USA, pp. 42–47, 2004.

    Google Scholar 

  65. T. M. Moerland, J. Broekens, C. M. Jonker. Emotion in reinforcement learning agents and robots: A survey. Machine Learning, vol. 107, no. 2, pp. 443–480, 2018. DOI: https://doi.org/10.1007/s10994-017-5666-0.

    Article  MathSciNet  Google Scholar 

  66. N. Goerke. EMOBOT: A robot control architecture based on emotion-like internal values. Mobile Robotics, Moving Intelligence, J. Buchli, Ed., Mammendorf, Germany: Advanced Robotic Systems International, 2006. DOI: https://doi.org/10.5772/4715.

    Google Scholar 

  67. Á. Castro-González, M. Malfaz, M. Á. Salichs. An autonomous social robot in fear. IEEE Transactions on Autonomous Mental Development, vol. 5, no. 2, pp. 135–151, 2013. DOI: https://doi.org/10.1109/TAMD.2012.2234120.

    Article  Google Scholar 

  68. J. Broekens, W. A. Kosters, F. J. Verbeek. Affect, anticipation, and adaptation: Affect-controlled selection of anticipatory simulation in artificial adaptive agents. Adaptive Behavior, vol. 15, no. 4, pp. 397–422, 2007. DOI: https://doi.org/10.1177/1059712307084686.

    Article  Google Scholar 

  69. J. G. Taylor, N. F. Fragopanagos. The interaction of attention and emotion. Neural Networks, vol. 18, no. 4, pp. 353–369, 2005. DOI: https://doi.org/10.1016/j.neunet.2005.03.005.

    Article  Google Scholar 

  70. C. Balkenius, J. Morén. Emotional learning: A computational model of the amygdala. Cybernetics and Systems, vol. 32, no. 6, pp. 611–636, 2001. DOI: https://doi.org/10.1080/01969720118947.

    Article  MATH  Google Scholar 

  71. M. A. Sharbafi, C. Lucas, R. Daneshvar. Motion control of omni-directional three-wheel robots by brain-emotional-learning-based intelligent controller. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 40, no. 6, pp. 630–638, 2010. DOI: https://doi.org/10.1109/TSMCC.2010.2049104.

    Article  Google Scholar 

  72. X. Huang, W. Wu, H. Qiao, Y. D. Ji. Brain-inspired motion learning in recurrent neural network with emotion modulation. IEEE Transactions on Cognitive and Developmental Systems, vol. 10, no. 4, pp. 1153–1164, 2018. DOI: https://doi.org/10.1109/TCDS.2018.2843563.

    Article  Google Scholar 

  73. X. Huang, W. Wu, H. Qiao. Connecting model-based and model-free control with emotion modulation in learning systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 51, no. 8, pp. 4624–4638, 2021. DOI: https://doi.org/10.1109/TSMC.2019.2933152.

    Article  Google Scholar 

  74. X. Huang, W. Wu, H. Qiao. Computational modeling of emotion-motivated decisions for continuous control of mobile robots. IEEE Transactions on Cognitive and Developmental Systems, vol. 13, no. 1, pp. 31–44, 2021. DOI: https://doi.org/10.1109/TCDS.2019.2963545.

    Article  Google Scholar 

  75. S. Boonphoapichart, S. Komada, T. Hori, W. A. Gruver. Robot motion decision-making system in unknown environments. In Proceedings of IEEE International Conference on Robotics and Automation, Taipei, China, pp. 4197–4202, 2003. DOI: https://doi.org/10.1109/ROBOT.2003.1242248.

  76. S. H. Tseng, J. H. Hua, S. P. Ma, L. E. Fu. Human awareness based robot performance learning in a social environment. In Proceedings of IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, pp. 4291–4296, 2013. DOI: https://doi.org/10.1109/ICRA.2013.6631184.

    Google Scholar 

  77. J. T. Ebert, M. Gauci, F. Mallmann-Trenn, R. Nagpal. Bayes bots: Collective Bayesian decision-making in decentralized robot swarms. In Proceedings of IEEE International Conference on Robotics and Automation, Paris, France, pp. 7186–7192, 2020. DOI: https://doi.org/10.1109/ICRA40945.2020.9196584.

  78. M. Riedmiller, T. Gabel, R. Hafner, S. Lange. Reinforcement learning for robot soccer. Autonomous Robots, vol. 27, no. 1, pp. 55–73, 2009. DOI: https://doi.org/10.1007/s10514-009-9120-4.

    Article  Google Scholar 

  79. K. Doya. Metalearning and neuromodulation. Neural Networks, vol. 151, no. 4–6, pp. 495–506, 2002. DOI: https://doi.org/10.1016/S0893-6080(02)00044-8.

    Article  Google Scholar 

  80. D. G. Thelen, F. C. Anderson, S. L. Delp. Generating dynamic simulations of movement using computed muscle control. Journal of Biomechanics, vol. 36, no. 3, pp. 321–328, 2003. DOI: https://doi.org/10.1016/S0021-9290(02)00432-3.

    Article  Google Scholar 

  81. K. M. Jagodnik, A. J. Van Den Bogert. Optimization and evaluation of a proportional derivative controller for planar arm movement. Journal of Biomechanics, vol. 43, no. 6, pp. 1086–1091, 2010. DOI: https://doi.org/10.1016/j.jbiomech.2009.12.017.

    Article  Google Scholar 

  82. K. Tahara, Y. Kuboyama, R. Kurazume. Iterative learning control for a musculoskeletal arm: Utilizing multiple space variables to improve the robustness. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, pp. 4620–4625, 2012. DOI: https://doi.org/10.1109/IROS.2012.6385628.

  83. H. Dong, N. Figueroa, A. El Saddik. Muscle force control of a kinematically redundant bionic arm with real-time parameter update. In Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, Manchester, UK, pp. 1640–1647, 2013. DOI: https://doi.org/10.1109/SMC.2013.283.

  84. K. Tahara, H. Kino. Iterative learning scheme for a redundant musculoskeletal arm: Task space learning with joint and muscle redundancies. In Proceedings of International Conference on Broadband, Wireless Computing, Communication and Applications, IEEE, Fukuoka, Japan, pp. 760–765, 2010. DOI: https://doi.org/10.1109/BWCCA.2010.168.

    Google Scholar 

  85. M. Jäntsch, C. Schmaler, S. Wittmeier, K. Dalamagkidis, A. Knoll. A scalable joint-space controller for musculoskeletal robots with spherical joints. In Proceedings of IEEE International Conference on Robotics and Biomimetics, Karon Beach, Thailand, pp. 2211–2216, 2011. DOI: https://doi.org/10.1109/ROBIO.2011.6181620.

  86. K. Kawaharazuka, M. Kawamura, S. Makino, Y. Asano, K. Okada, M. Inaba. Antagonist inhibition control in redundant tendon-driven structures based on human reciprocal innervation for wide range limb motion of musculoskeletal humanoids. IEEE Robotics and Automation Letters, vol. 2, no. 4, pp. 2119–2126, 2017. DOI: https://doi.org/10.1109/LRA.2017.2720854.

    Article  Google Scholar 

  87. M. Nakada, T. Zhou, H. L. Chen, T. Weiss, D. Terzopoulos. Deep learning of biomimetic sensorimotor control for biomechanical human animation. ACM Transactions on Graphics, vol. 37, no. 4, Article number 56, 2018. DOI: https://doi.org/10.1145/3197517.3201305.

  88. L. Rane, Z. Y. Ding, A. H. McGregor, A. M. J. Bull. Deep learning for musculoskeletal force prediction. Annals of Biomedical Engineering, vol. 47, no. 3, pp. 778–789, 2019. DOI: https://doi.org/10.1007/s10439-018-02190-0.

    Article  Google Scholar 

  89. Ł. Kidziński, S. P. Mohanty, C. F. Ong, Z. W. Huang, S. C. Zhou, A. Pechenko, A. Stelmaszczyk, P. Jarosik, M. Pavlov, S. Kolesnikov, S. Plis, Z. B. Chen, Z. Z. Zhang, J. L. Chen, J. Shi, Z. B. Zheng, C. Yuan, Z. H. Lin, H. Michalewski, P. Milos, B. Osinski, A. Melnik, M. Schilling, H. Ritter, S. F. Carroll, J. Hicks, S. Levine, M. Salathé, S. Delp. Learning to run challenge solutions: Adapting reinforcement learning methods for neuromusculoskeletal environments. In Proceedings of NIPS’17 Competition: Building Intelligent Systems, Springer, Cham, Germany, pp. 121–153, 2018. DOI: https://doi.org/10.1007/978-3-319-94042-7_7.

    Chapter  Google Scholar 

  90. V. Caggiano, H. W. Wang, G. Durandau, M. Sartori, V. Kumar. Myosuite: A contact-rich simulation suite for musculoskeletal motor control. In Proceedings of Learning for Dynamics and Control Conference, Stanford, USA, pp. 492–507, 2022.

  91. E. Tahami, A. H. Jafari, A. Fallah. Learning to control the three-link musculoskeletal arm using actor-critic reinforcement learning algorithm during reaching movement. Biomedical Engineering: Applications, Basis and Communications, vol. 26, no. 5, Article number 1450064, 2014. DOI: https://doi.org/10.4015/S1016237214500641.

  92. J. Izawa, T. Kondo, K. Ito. Biological robot arm motion through reinforcement learning. In Proceedings of IEEE International Conference on Robotics and Automation, Washington DC, USA, vol. 4, pp. 3398–3403, 2002. DOI: https://doi.org/10.1109/ROBOT.2002.1014236.

  93. D. C. Crowder, J. Abreu, R. F. Kirsch. Hindsight experience replay improves reinforcement learning for control of a MIMO musculoskeletal model of the human arm. IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 29, pp. 1016–1025, 2021. DOI: https://doi.org/10.1109/TNSRE.2021.3081056.

    Article  Google Scholar 

  94. H. R. Xu, X. Ma, L. Y. Xu, Q. Wang. Training musculoskeletal arm play taichi with deep reinforcement learning. In Proceedings of IEEE International Instrumentation and Measurement Technology Conference, Dubrovnik, Croatia, 2020, pp. 1–6. DOI: https://doi.org/10.1109/I2MTC43012.2020.9129264.

  95. J. H. Chen, H. Qiao. Muscle-synergies-based neuromuscular control for motion learning and generalization of a musculoskeletal system. IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 51, no. 6, pp. 3993–4006, 2021. DOI: https://doi.org/10.1109/TSMC.2020.2966818.

    Article  Google Scholar 

  96. J. H. Chen, S. L. Zhong, E. L. Kang, H. Qiao. Realizing human-like manipulation with a musculoskeletal system and biologically inspired control scheme. Neurocomputing, vol. 339, pp. 116–129, 2019. DOI: https://doi.org/10.1016/j.neucom.2018.12.069.

    Article  Google Scholar 

  97. J. H. Chen, H. Qiao. Motor-cortex-like recurrent neural network and multitask learning for the control of musculoskeletal systems. IEEE Transactions on Cognitive and Developmental Systems, vol. 14, no. 2, pp. 424–436, 2022. DOI: https://doi.org/10.1109/TCDS.2020.3045574.

    Article  Google Scholar 

  98. X. N. Wang, J. H. Chen, H. Qiao. Motion learning and rapid generalization for musculoskeletal systems based on recurrent neural network modulated by initial states. IEEE Transactions on Cognitive and Developmental Systems, vol. 14, no. 4, pp. 1691–1704, 2022. DOI: https://doi.org/10.1109/TCDS.2021.3136854.

    Article  Google Scholar 

  99. J. J. Zhou, J. H. Chen, H. Deng, H. Qiao. From rough to precise: Human-inspired phased target learning framework for redundant musculoskeletal systems. Frontiers in Neurorobotics, vol. 13, Article number 61, 2019. DOI: https://doi.org/10.3389/fnbot.2019.00061.

  100. J. J. Zhou, S. L. Zhong, W. Wu. Hierarchical motion learning for goal-oriented movements with speed-accuracy tradeoff of a musculoskeletal system. IEEE Transactions on Cybernetics, vol. 52, no. 11, pp. 11453–11466, 2022. DOI: https://doi.org/10.1109/TCYB.2021.3109021.

    Article  Google Scholar 

  101. J. H. Zhang, J. H. Chen, W. Wu, H. Qiao. A cerebellum-inspired prediction and correction model for motion control of a musculoskeletal robot. IEEE Transactions on Cognitive and Developmental Systems, to be published. DOI: https://doi.org/10.1109/TCDS.2022.3200839.

  102. H. Qiao, C. Li, P. J. Yin, W. Wu, Z. Y. Liu. Human-inspired motion model of upper-limb with fast response and learning ability-a promising direction for robot system and control. Assembly Automation, vol. 36, no. 1, pp. 97–107, 2016. DOI: https://doi.org/10.1108/AA-11-2015-099.

    Article  Google Scholar 

  103. A. A. Russo, S. R. Bittner, S. M. Perkins, J. S. Seely, B. M. London, A. H. Lara, A. Miri, N. J. Marshall, A. Kohn, T. M. Jessell, L. F. Abbott, J. P. Cunningham, M. M. Churchland. Motor cortex embeds muscle-like commands in an untangled population response. Neuron, vol. 97, no. 4, pp. 953–966.e8, 2018. DOI: https://doi.org/10.1016/j.neuron.2018.01.004.

    Article  Google Scholar 

  104. D. Sussillo, M. M. Churchland, M. T. Kaufman, K. V. Shenoy. A neural network that finds a naturalistic solution for the production of muscle activity. Nature Neuroscience, vol. 18, no. 7, pp. 1025–1033, 2015. DOI: https://doi.org/10.1038/nn.4042.

    Article  Google Scholar 

  105. T. C. Kao, M. S. Sadabadi, G. Hennequin. Optimal anticipatory control as a theory of motor preparation: A thalamo-cortical circuit model. Neuron, vol. 109, no. 9, pp. 1567–1581.e12, 2021. DOI: https://doi.org/10.1016/j.neuron.2021.03.009.

    Article  Google Scholar 

  106. A. D’Avella, P. Saltiel, E. Bizzi. Combinations of muscle synergies in the construction of a natural motor behavior. Nature Neuroscience, vol. 6, no. 3, pp. 300–308, 2003. DOI: https://doi.org/10.1038/nn1010.

    Article  Google Scholar 

  107. H. Hatze. A myocybernetic control model of skeletal muscle. Biological Cybernetics, vol. 25, no. 2, pp. 103–119, 1977. DOI: https://doi.org/10.1007/BF00337268.

    Article  MATH  Google Scholar 

  108. A. J. Van Soest, M. F. Bobbert. The contribution of muscle properties in the control of explosive movements. Biological Cybernetics, vol. 69, no. 3, pp. 195–204, 1993. DOI: https://doi.org/10.1007/BF00198959.

    Article  Google Scholar 

  109. D. G. Thelen. Adjustment of muscle mechanics model parameters to simulate dynamic contractions in older adults. Journal of Biomechanical Engineering, vol. 125, no. 1, pp. 70–77, 2003. DOI: https://doi.org/10.1115/1.1531112.

    Article  Google Scholar 

  110. A. V. Hill. The heat of shortening and the dynamic constants of muscle. Proceedings of the Royal Society B: Biological Sciences, vol. 126, no. 843, pp. 136–195, 1938. DOI: https://doi.org/10.1098/rspb.1938.0050.

    Google Scholar 

  111. A. V. Hill. The heat of activation and the heat of shortening in a muscle twitch. Proceedings of the Royal Society B: Biological Sciences, vol. 136, no. 883, pp. 195–211, 1949. DOI: https://doi.org/10.1098/rspb.1949.0019.

    Google Scholar 

  112. B. C. Abbott, D. R. Wilkie. The relation between velocity of shortening and the tension-length curve of skeletal muscle. Journal of Physiology, vol. 120, no. 1–2, pp. 214–223, 1953. DOI: https://doi.org/10.1113/jphysiol.1953.sp004886.

    Article  Google Scholar 

  113. F. X. Zajac. Muscle and tendon: Properties, models, scaling, and application to biomechanics and motor control. Critical Reviews in Biomedical Engineering, vol. 17, no. 4, pp. 359–411, 1989.

    Google Scholar 

  114. M. Millard, T. Uchida, A. Seth, S. L. Delp. Flexing computational muscle: Modeling and simulation of musculotendon dynamics. Journal of Biomechanical Engineering, vol. 135, no. 2, Article number 021005, 2013. DOI: https://doi.org/10.1115/1.4023390.

  115. F. Romero, F. J. Alonso. A comparison among different Hill-type contraction dynamics formulations for muscle force estimation. Mechanical Sciences, vol. 7, no. 1, pp. 19–29, 2016. DOI: https://doi.org/10.5194/ms-7-19-2016.

    Article  Google Scholar 

  116. K. Hosoda, Y. Sakaguchi, H. Takayama, T. Takuma. Pneumatic-driven jumping robot with anthropomorphic muscular skeleton structure. Autonomous Robots, vol. 28, no. 3, pp. 307–316, 2010. DOI: https://doi.org/10.1007/s10514-009-9171-6.

    Article  Google Scholar 

  117. E. Acome, S. K. Mitchell, T. G. Morrissey, M. B. Emmett, C. Benjamin, M. King, M. Radakovitz, C. Keplinger. Hydraulically amplified self-healing electrostatic actuators with muscle-like performance. Science, vol. 359, no. 6371, pp. 61–65, 2018. DOI: https://doi.org/10.1126/science.aao6139.

    Article  Google Scholar 

  118. N. Kellaris, V. Gopaluni Venkata, G. M. Smith, S. K. Mitchell, C. Keplinger. Peano-HASEL actuators: Muscle-mimetic, electrohydraulic transducers that linearly contract on activation. Science Robotics, vol. 3, no. 14, Article number eaar3276, 2018. DOI: https://doi.org/10.1126/scirobotics.aar3276.

  119. D. R. Higueras-Ruiz, M. W. Shafer, H. P. Feigenbaum. Cavatappi artificial muscles from drawing, twisting, and coiling polymer tubes. Science Robotics, vol. 6, no. 53, Article number eabd5383, 2021. DOI: https://doi.org/10.1126/scirobotics.abd5383.

  120. D. F. B. Haeufle, M. Günther, A. Bayer, S. Schmitt. Hill-type muscle model with serial damping and eccentric force-velocity relation. Journal of Biomechanics, vol. 47, no. 6, pp. 1531–1536, 2014. DOI: https://doi.org/10.1016/j.jbiomech.2014.02.009.

    Article  Google Scholar 

  121. Y. X. Wu, J. H. Chen, H. Qiao. Anti-interference analysis of bio-inspired musculoskeletal robotic system. Neurocomputing, vol. 436, pp. 114–125, 2021. DOI: https://doi.org/10.1016/j.neucom.2021.01.054.

    Article  Google Scholar 

  122. B. Liggett, N. P. Psuty, E. Goray. Kinesiology of the Musculoskeletal System, St. Louis, USA: Mosby/Elsevier, 2010.

    Google Scholar 

  123. M. S. Gazzaniga, R. B. Ivry, G. R. Mangun. Cognitive Neuroscience: The Biology of the Mind, 2nd ed., St. Louis, USA: Mosby/Elsevier, 2009.

    Book  Google Scholar 

  124. S. F. Giszter, F. A. Mussa-Ivaldi, E. Bizzi. Convergent force fields organized in the frog’s spinal cord. Journal of Neuroscience, vol. 13, no. 2, pp. 467–491, 1993. DOI: https://doi.org/10.1523/JNEUROSCI.13-02-00467.1993.

    Article  Google Scholar 

  125. E. Bizzi, N. Accornero, W. Chappie, N. Hogan. Arm trajectory formation in monkeys. Experimental Brain Research, vol. 46, no. 1, pp. 139–143, 1982. DOI: https://doi.org/10.1007/BF00238107.

    Article  Google Scholar 

  126. W. J. Kargo, S. F. Giszter. Rapid correction of aimed movements by summation of force-field primitives. Journal of Neuroscience, vol. 20, no. 1, pp. 409–426, 2000. DOI: https://doi.org/10.1523/JNEUROSCI.20-01-00409.2000.

    Article  Google Scholar 

  127. C. B. Hart, S. F. Giszter. A neural basis for motor primitives in the spinal cord. Journal of Neuroscience, vol. 30, no. 4, pp. 1322–1336, 2010. DOI: https://doi.org/10.1523/JNEUROSCL5894-08.2010.

    Article  Google Scholar 

  128. S. L. Zhong, Z. Y. Chen, J. J. Zhou. Structure transforming for constructing constraint force field in musculoskeletal robot. Assembly Automation, vol. 42, no. 2, pp. 169–180, 2022. DOI: https://doi.org/10.1108/AA-07-2021-0093.

    Article  Google Scholar 

  129. S. L. Zhong, J. J. Zhou, W. Wu. Constructing constraint force field in musculoskeletal robot by co-optimizing muscle arrangements and constant activations. In Proceedings of International Joint Conference on Neural Networks, IEEE, Padua, Italy, 2022. DOI: https://doi.org/10.1109/IJCNN55064.2022.9892969.

    Google Scholar 

  130. H. Qiao, M. Wang, J. H. Su, S. X. Jia, R. Li. The concept of “attractive region in environment” and its application in high-precision tasks with low-precision systems. IEEE/ASME Transactions on Mechatronics, vol. 20, no. 5, pp. 2311–2327, 2015. DOI: https://doi.org/10.1109/TMECH.2014.2375638.

    Article  Google Scholar 

  131. S. L. Delp, F. C. Anderson, A. S. Arnold, P. Loan, A. Habib, C. T. John, E. Guendelman, D. G. Thelen. OpenSim: Open-source software to create and analyze dynamic simulations of movement. IEEE Transactions on Biomedical Engineering, vol. 54, no. 11, pp. 1940–1950, 2007. DOI: https://doi.org/10.1109/TBME.2007.901024.

    Article  Google Scholar 

  132. F. Lacquaniti, J. F. Soechting. Coordination of arm and wrist motion during a reaching task. Journal of Neuroscience, vol. 2, no. 4, pp. 399–408, 1982. DOI: https://doi.org/10.1523/JNEUROSCI.02-04-00399.1982.

    Article  Google Scholar 

  133. P. Ramkumar, B. Dekleva, S. Cooler, L. Miller, K. Kording. Premotor and motor cortices encode reward. PLoS One, vol. 11, no. 8, Article number e0160851, 2016. DOI: https://doi.org/10.1371/journal.pone.0160851.

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Nos. 91948303, 62203443 and 62203439), the Major Project of Science and Technology Innovation 2030 C Brain Science and Brain-inspired Intelligence (No. 2021ZD0200408), the Strategic Priority Research Program of Chinese Academy of Science (No. XDB 32050100), the Science Foundation for Youth of the State Key Laboratory of Management and Control for Complex System (No. 2022QN09).

Author information

Authors and Affiliations

  1. The State Key Laboratory of Management and Control for Complex System, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China

    Hong Qiao, Ya-Xiong Wu, Shan-Lin Zhong, Pei-Jie Yin & Jia-Hao Chen

  2. School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China

    Hong Qiao, Shan-Lin Zhong & Jia-Hao Chen

  3. Chinese Academy of Science Center for Excellence in Brain Science and Intelligence Technology, Shanghai, 200031, China

    Hong Qiao

  4. School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, 100083, China

    Ya-Xiong Wu

Authors
  1. Hong Qiao
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Ya-Xiong Wu
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Shan-Lin Zhong
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Pei-Jie Yin
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Jia-Hao Chen
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Hong Qiao.

Additional information

Qiao Hong received the B. Eng. degree in hydraulics and control and the M. Eng. degree in robotics from Xi’an Jiaotong University, China in 1986 and 1989, respectively, the M. Phil. degree in robotics control from the Industrial Control Center, University of Strathclyde, UK in 1992, and the Ph.D. degree in robotics and artificial intelligence from De Montfort University, UK in 1995. She was a university research fellow with De Montfort University from 1995 to 1997. She was a research assistant professor with Department of Manufacturing Engineering and Engineering Management, City University of Hong Kong, China, from 1997 to 2000, where she was an assistant professor from 2000 to 2002. Since 2002, she has been a lecturer with School of Informatics, University of Manchester, UK. She is currently a professor with State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, China. She first proposed the concept of the attractive region in strategy investigation, which has successfully been applied by herself in robot assembly, robot grasping, and part recognition. She has authored the book entitled Advanced Manufacturing Alert (Wiley, 1999).

Prof. Qiao is currently an Associate Editor of the IEEE Transactions on Cybernetics and the IEEE Transactions on Automation Science and Engineering. She is the Editor-in-Chief of the Assembly Automation. She is currently a Member of the Administrative Committee of the IEEE Robotics and Automation Society, the IEEE Medal for Environmental and Safety Technologies Committee, the Early Career Award Nomination Committee, the Most Active Technical Committee Award Nomination Committee, and the Industrial Activities Board for RAS.

Her research interests include information-based strategy investigation, robotics and intelligent agents, animation, machine learning, and pattern recognition.

Ya-Xiong Wu received the B.Eng. degree in mechanical engineering from University of Science and Technology Beijing, China in 2019. He is currently a Ph. D. degree candidate in mechanical engineering at University of Science and Technology Beijing, China.

His research interests include the robustness analysis and controller design of bio-inspired musculoskeletal robotic systems.

Shan-Lin Zhong received the B. Eng. degree in control theory and control engineering from North China Electric Power University, China in 2016, and the Ph.D. degree in control theory and control engineering from Institute of Automation, Chinese Academy of Sciences, China in 2022. He is currently an assistant professor with State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, China.

His research interests include brain-like intelligent robot, robotic manipulation, and machine learning.

Pei-Jie Yin received the B.Sc. degree in statistics from University of Science and Technology of China, China in 2013, and the Ph.D. degree in applied mathematics from Institute of Applied Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, China in 2018. He is now an assistant professor with Institute of Automation, Chinese Academy of Sciences, China.

His research interests include biologically inspired visual algorithms, dynamic environment understanding and humanoid motion learning.

Jia-Hao Chen received the B.Eng. degree in control theory and control engineering from China Agricultural University, China in 2016, and the Ph.D. degree in control theory and control engineering from Institute of Automation, Chinese Academy of Sciences, China in 2021. He also serves as an editorial assistant of Assembly Automation and review editor of Frontiers in Neurorobotics and Frontiers in Neuroscience.

His research interests include musculoskeletal robots, brain-inspired motion learning, reinforcement learning, and multi-task continual learning.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qiao, H., Wu, YX., Zhong, SL. et al. Brain-inspired Intelligent Robotics: Theoretical Analysis and Systematic Application. Mach. Intell. Res. 20, 1–18 (2023). https://doi.org/10.1007/s11633-022-1390-8

Download citation

  • Received: 18 July 2022

  • Accepted: 01 November 2022

  • Published: 10 January 2023

  • Issue Date: February 2023

  • DOI: https://doi.org/10.1007/s11633-022-1390-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Brain-inspired intelligent robot
  • software and hardware
  • decision making
  • muscle control
  • cognitive intelligence
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.