Skip to main content

Advertisement

SpringerLink
AI in Human-computer Gaming: Techniques, Challenges and Opportunities
Download PDF
Download PDF
  • Review
  • Open Access
  • Published: 07 January 2023

AI in Human-computer Gaming: Techniques, Challenges and Opportunities

  • Qi-Yue Yin  ORCID: orcid.org/0000-0002-3442-62751,2,
  • Jun Yang  ORCID: orcid.org/0000-0002-9386-58253,
  • Kai-Qi Huang  ORCID: orcid.org/0000-0002-2677-92731,2,4,
  • Mei-Jing Zhao1,
  • Wan-Cheng Ni1,2,
  • Bin Liang3,
  • Yan Huang1,2,
  • Shu Wu1,2 &
  • …
  • Liang Wang1,2,4 

Machine Intelligence Research (2023)Cite this article

  • 122 Accesses

  • Metrics details

Abstract

With the breakthrough of AlphaGo, human-computer gaming AI has ushered in a big explosion, attracting more and more researchers all over the world. As a recognized standard for testing artificial intelligence, various human-computer gaming AI systems (AIs) have been developed, such as Libratus, OpenAI Five, and AlphaStar, which beat professional human players. The rapid development of human-computer gaming AIs indicates a big step for decision-making intelligence, and it seems that current techniques can handle very complex human-computer games. So, one natural question arises: What are the possible challenges of current techniques in human-computer gaming and what are the future trends? To answer the above question, in this paper, we survey recent successful game AIs, covering board game AIs, card game AIs, first-person shooting game AIs, and real-time strategy game AIs. Through this survey, we 1) compare the main difficulties among different kinds of games and the corresponding techniques utilized for achieving professional human-level AIs; 2) summarize the mainstream frameworks and techniques that can be properly relied on for developing AIs for complex human-computer games; 3) raise the challenges or drawbacks of current techniques in the successful AIs; and 4) try to point out future trends in human-computer gaming AIs. Finally, we hope that this brief review can provide an introduction for beginners and inspire insight for researchers in the field of AI in human-computer gaming.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. N. E. Cagiltay. Teaching software engineering by means of computer-game development: Challenges and opportunities. British Journal of Educational Technology, vol. 38, no. 3, pp. 405–415, 2007. DOI: https://doi.org/10.1111/j.1467-8535.2007.00705.x.

    Article  Google Scholar 

  2. R. J. Crouser, R. Chang. An affordance-based framework for human computation and human-computer collaboration. IEEE Transactions on Visualization and Computer Graphics, vol. 18, no. 12, pp. 2859–2868, 2012. DOI: https://doi.org/10.1109/TVCG.2012.195.

    Article  Google Scholar 

  3. A. P. Saygin, I. Cicekli, V. Akman. Turing test: 50 years later. Minds and Machines, vol. 10, no. 4, pp. 463–518, 2000. DOI: https://doi.org/10.1023/A:1011288000451.

    Article  Google Scholar 

  4. J. Schaeffer, R. Lake, P. Lu, M. Bryant. Chinook the world man-machine checkers champion. AI Magazine, vol. 17, no. 1, Article number 21, 1996. DOI: https://doi.org/10.1609/aimag.v17i1.1208.

    Google Scholar 

  5. M. Campbell, A. J. Jr. Hoane, F. H. Hsu. Deep Blue. Artificial Intelligence, vol. 134, no. 1–2, pp. 57–83, 2002. DOI: https://doi.org/10.1016/S0004-3702(01)00129-1.

    Article  MATH  Google Scholar 

  6. V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, D. Hassabis. Human-level control through deep reinforcement learning. Nature, vol. 518, no. 7540, pp. 529–533, 2015. DOI: https://doi.org/10.1038/nature14236.

    Article  Google Scholar 

  7. D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, D. Hassabis. Mastering the game of go with deep neural networks and tree search. Nature, vol. 529, no. 7587, pp. 484–489, 2016. DOI: https://doi.org/10.1038/nature16961.

    Article  Google Scholar 

  8. N. Brown, T. Sandholm. Superhuman AI for heads-up no-limit poker: Libratus beats top professionals. Science, vol. 359, no. 6374, pp. 418–424, 2018. DOI: https://doi.org/10.1126/science.aao1733.

    Article  MathSciNet  MATH  Google Scholar 

  9. C. Berner, G. Brockman, B. Chan, V. Cheung, P. Dçbiak, C. Dennison, D. Farhi, Q. Fischer, S. Hashme, C. Hesse, R. Józefowicz, S. Gray, C. Olsson, J. Pachocki, M. Petrov, H. P. d. O. Pinto, J. Raiman, T. Salimans, J. Schlatter, J. Schneider, S. Sidor, I. Sutskever, J. Tang, F. Wolski, S. S. Zhang. Dota 2 with large scale deep reinforcement learning. [Online], Available: https://arxiv.org/abs/1912.06680v1, 2019.

  10. O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H. Choi, R. Powell, T. Ewalds, P. Georgiev, J. Oh, D. Horgan, M. Kroiss, I. Danihelka, A. Huang, L. Sifre, T. Cai, J. P. Agapiou, M. Jaderberg, A. S. Vezhnevets, R. Leblond, T. Pohlen, V. Dalibard, D. Budden, Y. Sulsky, J. Molloy, T. L. Paine, C. Gulcehre, Z. Y. Wang, T. Pfaff, Y. H. Wu, R. Ring, D. Yogatama, D. Wünsch, K. McKinney, O. Smith, T. Schaul, T. Lillicrap, K. Kavukcuoglu, D. Hassabis, C. Apps, D. Silver. Grandmaster level in starcraft ii using multi-agent reinforcement learning. Nature, vol. 575, no. 7782, pp. 350–354, 2019. DOI: https://doi.org/10.1038/s41586-019-1724-z.

    Article  Google Scholar 

  11. A. P. Badia, B. Piot, S. Kapturowski, P. Sprechmann, A. Vitvitskyi, Z. D. Guo, C. Blundell. Agent57: Outperforming the Atari human benchmark. In Proceedings of the 37th International Conference on Machine Learning, pp. 507–517, 2020.

  12. B. Baker, I. Kanitscheider, T. Markov, Y. Wu, G. Powell, B. McGrew, I. Mordatch. Emergent tool use from multi-agent autocurricula. [Online], Available: https://arxiv.org/abs/1909.07528, 2019.

  13. N. Brown, T. Sandholm. Superhuman AI for multiplayer poker. Science, vol. 365, no. 6456, pp. 885–890, 2019. DOI: https://doi.org/10.1126/science.aay2400.

    Article  MathSciNet  MATH  Google Scholar 

  14. D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. T. Chen, T. Lillicrap, F. Hui, L. Sifre, G. Van Den driessche, T. Graepel, D. Hassabis. Mastering the game of go without human knowledge. Nature, vol. 550, no. 7676, pp. 354–359, 2017. DOI: https://doi.org/10.1038/nature24270.

    Article  Google Scholar 

  15. D. H. Ye, G. B. Chen, W. Zhang, S. Chen, B. Yuan, B. Liu, J. Chen, Z. Liu, F. H. Qiu, H. S. Yu, Y. Y. T. Yin, B. Shi, L. Wang, T. F. Shi, Q. Fu, W. Yang, L. X. Huang, W. Liu. Towards playing full MOBA games with deep reinforcement learning. In Proceedings of the 34th International Conference on Neural Information Processing Systems, Vancouver, Canada, Article number 53, 2020.

  16. J. J. Li, S. Koyamada, Q. W. Ye, G. Q. Liu, C. Wang, R. H. Yang, L. Zhao, T. Qin, T. Y. Liu, H. W. Hon. Suphx: Mastering mahjong with deep reinforcement learning. [Online], Available: https://arxiv.org/abs/2003.13590v2, 2020.

  17. D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan, D. Hassabis. A general reinforcement learning algorithm that masters chess, shogi, and go through self-play. Science, vol. 362, no. 6419, pp. 1140–1144, 2018. DOI: https://doi.org/10.1126/science.aar6404.

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Moravčík, M. Schmid, N. Burch, V. Lisý, D. Morrill, N. Bard, T. Davis, K. Waugh, M. Johanson, M. Bowling. DeepStack: Expert-level artificial intelligence in heads-up no-limit poker. Science, vol. 356, no. 6337, pp. 508–513, 2017. DOI: https://doi.org/10.1126/science.aam6960.

    Article  MathSciNet  MATH  Google Scholar 

  19. D. C. Zha, J. R. Xie, W. Y. Ma, S. Zhang, X. R. Lian, X. Hu, J. Liu. Douzero: Mastering doudizhu with self-play deep reinforcement learning. In Proceedings of the 38th International Conference on Machine Learning, pp. 12333–12344, 2021.

  20. M. Jaderberg, W. M. Czarnecki, I. Dunning, L. Marris, G. Lever, A. G. Castañeda, C. Beattie, N. C. Rabinowitz, A. S. Morcos, A. Ruderman, N. Sonnerat, T. Green, L. Deason, J. Z. Leibo, D. Silver, D. Hassabis, K. Kavukcuoglu, T. Graepel. Human-level performance in 3D multi-player games with population-based reinforcement learning. Science, vol. 364, no. 6443, pp. 859–865, 2019. DOI: https://doi.org/10.1126/science.aau6249.

    Article  MathSciNet  Google Scholar 

  21. X. J. Wang, J. X. Song, P. H. Qi, P. Peng, Z. K. Tang, W. Zhang, W. M. Li, X. J. Pi, J. J. He, C. Gao, H. T. Long, Q. Yuan. SCC: An efficient deep reinforcement learning agent mastering the game of StarCraft II. In Proceedings of the 38th International Conference on Machine Learning, pp. 10905–10915, 2021.

  22. Q. Y. Yin, M. J. Zhao, W. C. Ni, J. G. Zhang, K. Q. Huang. Intelligent decision making technology and challenge of wargame. Acta Automatica Sinica, vol. 48, no. 9, pp. 1–15, 2022. DOI: https://doi.org/10.16383/j.aas.c210547. (in Chinese)

    Google Scholar 

  23. N. Brown, T. Sandholm. Safe and nested subgame solving for imperfect-information games. In Proceedings of the 31st Conference on Neural Information Processing Systems, Long Beach, USA, pp. 689–699, 2017.

  24. N. Burch. Time and Space: Why Imperfect Information Games are Hard, Ph. D. dissertation, Department of Computing Science, University of Alberta, Edmonton, Canada, 2017.

    Google Scholar 

  25. R. Sanjaya, J. Wang, Y. D. Yang. Measuring the non-transitivity in chess. Algorithms, vol. 15, no. 5, Article number 152, 2022. DOI: https://doi.org/10.3390/a15050152.

    Google Scholar 

  26. W. M. Czarnecki, G. Gidel, B. Tracey, K. Tuyls, S. Omidshafiei, D. Balduzzi, M. Jaderberg. Real world games look like spinning tops. In Proceedings of the 34th Conference on Neural Information Processing Systems, Vancouver, Canada, pp. 17443–17454, 2020.

  27. C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, S. Colton. A survey of Monte Carlo tree search methods. IEEE Transactions on Computational Intelligence and AI in Games, vol. 4, no. 1, pp. 1–43, 2012. DOI: https://doi.org/10.1109/TCIAIG.2012.2186810.

    Article  Google Scholar 

  28. L. Schaefers, M. Platzner. Distributed Monte Carlo tree search: A novel technique and its application to computer go. IEEE Transactions on Computational Intelligence and AI in Games, vol. 7, no. 4, pp. 361–374, 2015. DOI: https://doi.org/10.1109/TCIAIG.2014.2346997.

    Article  Google Scholar 

  29. A. E. Elo. The Rating of Chess Players, Past & Present, New York, USA: Arco Pub, 1978.

    Google Scholar 

  30. M. Zinkevich, M. Johanson, M. Bowling, C. Piccione. Regret minimization in games with incomplete information. In Proceedings of the 20th International Conference on Neural Information Processing Systems, Vancouver, Canada, pp. 1729–1736, 2007.

  31. M. Lanctot, K. Waugh, M. Zinkevich, M. Bowling. Monte Carlo sampling for regret minimization in extensive games. In Proceedings of the 22nd International Conference on Neural Information Processing Systems, Vancouver, Canada, pp. 1078–1086, 2009.

  32. N. Burch, M. Johanson, M. Bowling. Solving imperfect information games using decomposition. In Proceedings of the 28th AAAI Conference on Artificial Intelligence, Québec City, Canada, pp. 602–608, 2013.

  33. Y. Li, D. Xu. Skill learning for robotic insertion based on one-shot demonstration and reinforcement learning. International Journal of Automation and Computing, vol. 18, no. 3, pp. 457–467, 2021. DOI: https://doi.org/10.1007/s11633-021-1290-3.

    Article  Google Scholar 

  34. K. Arulkumaran, M. P. Deisenroth, M. Brundage, A. A. Bharath. Deep reinforcement learning: A brief survey. IEEE Signal Processing Magazine, vol. 34, no. 6, pp. 26–38, 2017. DOI: https://doi.org/10.1109/MSP.2017.2743240.

    Article  Google Scholar 

  35. Y. Yu. Towards sample efficient reinforcement learning. In Proceedings of the 27th International Joint Conference on Artificial Intelligence, Stockholm, Sweden, pp. 5739–5743, 2018.

  36. T. M. Moerland, J. Broekens, C. M. Jonker. Model-based reinforcement learning: A survey. [Online], Available: https://arxiv.org/abs/2006.16712, 2020.

  37. A. J. Baruah, S. Baruah. Data augmentation and deep neuro-fuzzy network for student performance prediction with MapReduce framework. International Journal of Automation and Computing, vol. 18, no. 6, pp. 981–992, 2021. DOI: https://doi.org/10.1007/s11633-021-1312-1.

    Article  MathSciNet  MATH  Google Scholar 

  38. M. R. Samsami, H. Alimadad. Distributed deep reinforcement learning: An overview. [Online], Available: https://arxiv.org/abs/2011.11012, 2020. DOI: 10.48550/arxiv.2011.11012.

  39. T. Y. Chen, K. Q. Zhang, G. B. Giannakis, T. Başar. Communication-efficient distributed reinforcement learning. [Online], Available: https://arxiv.org/abs/1812.03239, 2018.

  40. A. Nair, P. Srinivasan, S. Blackwell, C. Alcicek, R. Fearon, A. De Maria, V. Panneershelvam, M. Suleyman, C. Beattie, S. Petersen, S. Legg, V. Mnih, K. Kavukcuoglu, D. Silver. Massively parallel methods for deep reinforcement learning. [Online], Available: https://arxiv.org/abs/1507.04296v2, 2015.

  41. L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward, Y. Doron, V. Firoiu, T. Harley, I. Dunning, S. Legg, K. Kavukcuoglu. IMPALA: Scalable distributed Deep-RL with importance weighted actor-learner architectures. In Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, pp. 1406–1415, 2018.

  42. L. Espeholt, R. Marinier, P. Stanczyk, K. Wang, M. Michalski. SEED RL: Scalable and efficient Deep-RL with accelerated central inference. In Proceedings of the 8th International Conference on Learning Representations, Addis Ababa, Ethiopia, pp. 1–20, 2020.

  43. M. W. Hoffman, B. Shahriari, J. Aslanides, G. Barth-Maron, N. Momchev, D. Sinopalnikov, P. Stańczyk, S. Ramos, A. Raichuk, D. Vincent, L. Hussenot, R. Dadashi, G. Dulac-Arnold, M. Orsini, A. Jacq, J. Ferret, N. Vieillard, S. K. S. Ghasemipour, S. Girgin, O. Pietquin, F. Behbahani, T. Norman, A. Abdolmaleki, A. Cassirer, F. Yang, K. Baumli, S. Henderson, A. Friesen, R. Haroun, A. Novikov, S. G. Colmenarejo, S. Cabi, C. Gulcehre, T. Le Paine, S. Srinivasan, A. Cowie, Z. Y. Wang, B. Piot, N. de Freitas. Acme: A research framework for distributed reinforcement learning. [Online], Available: https://arxiv.org/abs/2006.00979, 2020.

  44. W. J. Hong, P. Yang, K. Tang. Evolutionary computation for large-scale multi-objective optimization: A decade of progresses. International Journal of Automation and Computing, vol. 18, no. 2, pp. 155–169, 2021. DOI: https://doi.org/10.1007/s11633-020-1253-0.

    Article  Google Scholar 

  45. C. Daskalakis, P. W. Goldberg, C. H. Papadimitriou. The complexity of computing a Nash equilibrium. SIAM Journal on Computing, vol. 39, no. 1, pp. 195–259, 2009. DOI: https://doi.org/10.1137/070699652.

    Article  MathSciNet  MATH  Google Scholar 

  46. N. Brown, A. Bakhtin, A. Lerer, Q. C. Gong. Combining deep reinforcement learning and search for imperfect-information games. In Proceedings of the 34th International Conference on Neural Information Processing Systems, Vancouver, Canada, Article number 1431, 2020.

  47. Y. F. Lv, X. M. Ren. Approximate Nash solutions for multiplayer mixed-zero-sum game with reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 49, no. 12, pp. 2739–2750, 2019. DOI: https://doi.org/10.1109/TSMC.2018.2861826.

    Article  Google Scholar 

  48. J. Heinrich, M. Lanctot, D. Silver. Fictitious self-play in extensive-form games. In Proceedings of the 32nd International Conference on Machine Learning, Lille, France, pp. 805–813, 2015.

  49. V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver, K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In Proceedings of the 33rd International Conference on Machine Learning, New York, USA, pp. 1928–1937, 2016.

  50. J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov. Proximal policy optimization algorithms. [Online], Available: https://arxiv.org/abs/1707.06347, 2017.

  51. P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang, M. Elibol, Z. H. Yang, W. Paul, M. I. Jordan, I. Stoica. Ray: A distributed framework for emerging AI applications. In Proceedings of the 13th USENIX Symposium on Operating Systems Design and Implementation, Carlsbad, USA, pp. 561–577, 2018.

  52. A. Sergeev, M. Del Balso. Horovod: Fast and easy distributed deep learning in TensorFlow. [Online], Available: https://arxiv.org/abs/1802.05799, 2018.

  53. T. Kurth, M. Smorkalov, P. Mendygral, S. Sridharan, A. Mathuriya. TensorFlow at scale: Performance and productivity analysis of distributed training with Horovod, MLSL, and Cray PE ML. Concurrency and Computation: Practice and Experience, vol. 31, no. 16, Article number e4989, 2019. DOI: https://doi.org/10.1002/cpe.4989.

    Google Scholar 

  54. X. P. Qiu, T. X. Sun, Y. G. Xu, Y. F. Shao, N. Dai, X. J. Huang. Pre-trained models for natural language processing: A survey. Science China Technological Sciences, vol. 63, no. 10, pp. 1872–1897, 2020. DOI: https://doi.org/10.1007/s11431-020-1647-3.

    Article  Google Scholar 

  55. J. Y. Lin, R. Men, A. Yang, C. Zhou, M. Ding, Y. C. Zhang, P. Wang, A. Wang, L. Jiang, X. Y. Jia, J. Zhang, J. W. Zhang, X. Zou, Z. K. Li, X. D. Deng, J. Liu, J. B. Xue, H. L. Zhou, J. X. Ma, J. Yu, Y. Li, W. Lin, J. R. Zhou, J. Tang, H. X. Yang. M6: A Chinese multimodal pretrainer. [Online], Available: https://arxiv.org/abs/2103.00823, 2021.

  56. T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, D. Amodei. Language models are few-shot learners. In Proceedings of the 34th Annual Conference on Neural Information Processing Systems, Vancouver, Canada, pp. 1877–1901, 2020.

  57. J. Y. Lin, A. Yang, J. Z. Bai, C. Zhou, L. Jiang, X. Y. Jia, A. Wang, J. Zhang, Y. Li, W. Lin, J. R. Zhou, H. X. Yang. M6-10T: A sharing-delinking paradigm for efficient multi-trillion parameter pretraining. [Online], Available: https://arxiv.org/abs/2110.03888, 2021.

  58. M. Biesialska, K. Biesialska, M. R. Costa-Jussà. Continual lifelong learning in natural language processing: A survey. In Proceedings of the 28th International Conference on Computational Linguistics, Barcelona, Spain, pp. 6523–6541, 2020. DOI: https://doi.org/10.18653/v1/2020.coling-main.574.

  59. M. De Lange, R. Aljundi, M. Masana, S. Parisot, X. Jia, A. Leonardis, G. Slabaugh, T. Tuytelaars. A continual learning survey: Defying forgetting in classification tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 7, pp. 3366–3385, 2022. DOI: https://doi.org/10.1109/TPAMI.2021.3057446.

    Google Scholar 

  60. L. V. Rueden, S. Mayer, K. Beckh, B. Georgiev, S. Giesselbach, R. Heese, B. Kirsch, M. Walczak, J. Pfrommer, A. Pick, R. Ramamurthy, J. Garcke, C. Bauckhage, J. Schuecker. Informed machine learning — A taxonomy and survey of integrating prior knowledge into learning systems. IEEE Transactions on Knowledge and Data Engineering, to be published. DOI: https://doi.org/10.1109/TKDE.2021.3079836.

  61. Y. Wu, J. H. Li, Y. Z. Yuan, A. K. Qin, Q. G. Miao, M. G. Gong. Commonality autoencoder: Learning common features for change detection from heterogeneous images. IEEE Transactions on Neural Networks and Learning Systems, vol. 33, no. 9, pp. 4257–4270, 2022. DOI: https://doi.org/10.1109/TNNLS.2021.3056238.

    Article  Google Scholar 

  62. M. K. Titsias, S. Nikoloutsopoulos. Bayesian transfer reinforcement learning with prior knowledge rules. [Online], Available: https://arxiv.org/abs/1810.00468, 2018.

  63. N. Bougie, L. K. Cheng, R. Ichise. Combining deep reinforcement learning with prior knowledge and reasoning. ACM SIGAPP Applied Computing Review, vol. 18, no. 2, pp. 33–45, 2018. DOI: https://doi.org/10.1145/3243064.3243067.

    Article  Google Scholar 

  64. M. C. Shen, J. P. How. Robust opponent modeling via adversarial ensemble reinforcement learning. In Proceedings of the 31st International Conference on Automated Planning and Scheduling, Guangzhou, China, pp. 578–587, 2021.

  65. M. J. Kim, K. J. Kim. Opponent modeling based on action table for MCTS-based fighting game AI. In Proceedings of IEEE Conference on Computational Intelligence and Games, New York, USA, pp. 178–180, 2017. DOI: https://doi.org/10.1109/CIG.2017.8080432.

  66. F. B. Von Der Osten, M. Kirley, T. Miller. The minds of many: Opponent modelling in a stochastic game. In Proceedings of the 26th International Joint Conference on Artificial Intelligence, Melbourne, Australia, pp. 3845–3851, 2017.

  67. D. Balduzzi, K. Tuyls, J. Perolat, T. Graepel. Re-evaluating evaluation. In Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montréal, Canada, pp. 3272–3283, 2018.

  68. S. Omidshafiei, C. Papadimitriou, G. Piliouras, K. Tuyls, M. Rowland, J. B. Lespiau, W. M. Czarnecki, M. Lanctot, J. Perolat, R. Munos. α-rank: Multi-agent evaluation by evolution. Scientific Reports, vol. 9, no. 1, Article number 9937, 2019. DOI: https://doi.org/10.1038/s41598-019-45619-9.

    Google Scholar 

  69. K. Tuyls, J. Pérolat, M. Lanctot, G. Ostrovski, R. Savani, J. Z. Leibo, T. Ord, T. Graepel, S. Legg. Symmetric decomposition of asymmetric games. Scientific Reports, vol. 8, no. 1, Article number 1015, 2018. DOI: https://doi.org/10.1038/s41598-018-19194-4.

    Google Scholar 

  70. H. T. Jia, Y. J. Hu, Y. F. Chen, C. X. Ren, T. J. Lv, C. J. Fan, C. J. Zhang. Fever basketball: A complex, flexible, and asynchronized sports game environment for multi-agent reinforcement learning. [Online], Available: https://arxiv.org/abs/2012.03204, 2020.

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 61906197).

Author information

Authors and Affiliations

  1. Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China

    Qi-Yue Yin, Kai-Qi Huang, Mei-Jing Zhao, Wan-Cheng Ni, Yan Huang, Shu Wu & Liang Wang

  2. School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China

    Qi-Yue Yin, Kai-Qi Huang, Wan-Cheng Ni, Yan Huang, Shu Wu & Liang Wang

  3. Department of Automation, Tsinghua University, Beijing, 100084, China

    Jun Yang & Bin Liang

  4. Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing, 100190, China

    Kai-Qi Huang & Liang Wang

Authors
  1. Qi-Yue Yin
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Jun Yang
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Kai-Qi Huang
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Mei-Jing Zhao
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Wan-Cheng Ni
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Bin Liang
    View author publications

    You can also search for this author in PubMed Google Scholar

  7. Yan Huang
    View author publications

    You can also search for this author in PubMed Google Scholar

  8. Shu Wu
    View author publications

    You can also search for this author in PubMed Google Scholar

  9. Liang Wang
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding authors

Correspondence to Jun Yang or Kai-Qi Huang.

Additional information

Qi-Yue Yin received the Ph. D. degree in pattern recognition and intelligent system from National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences (CASIA), China in 2017. He is currently an associate professor at Center for Research on Intelligent System and Engineering, CASIA, China.

His research interests include machine learning, pattern recognition and artificial intelligence on games.

Jun Yang received the Ph.D. degree in control science and engineering from Tsinghua University, China in 2011. He is currently a lecturer with Department of Automation, Tsinghua University, China.

His research interests include multi-agent reinforcement learning and game theory.

Kai-Qi Huang received the Ph. D. degree in communication and information processing from Southeast University, China in 2004. He is currently a professor at Center for Research on Intelligent System and Engineering, CASIA, China.

His research interests include visual surveillance, image understanding, pattern recognition, human-computer gaming and biological based vision.

Mei-Jing Zhao received the Ph. D. degree in pattern recognition and intelligent system from Integrated Information System Research Center, CASIA, China in 2016. She is currently an associate professor at Center for Research on Intelligent System and Engineering, CASIA, China.

Her research interests include semantic information processing, knowledge representation and reasoning.

Wan-Cheng Ni received the Ph.D. degree in contemporary integrated manufacturing systems from Department of Automation, Tsinghua University, China in 2007. She is currently a professor at Center for Research on Intelligent System and Engineering, CASIA, China.

Her research interests include information processing and knowledge discovery, group intelligent decision-making platform and evaluation.

Bin Liang received the Ph.D. degree in precision instruments and mechanology from Tsinghua University, China in 1994. He is currently a professor with Department of Automation, Tsinghua University, China.

His research interests include artificial intelligence, anomaly detection, space robotics, and fault-tolerant control.

Yan Huang received the Ph.D. degree in pattern recognition and intelligent system from National Laboratory of Pattern Recognition (NLPR), CASIA, China in 2017. He is currently an associate professor at NLPR, CASIA, China.

His research interests include visual language understanding and video analysis.

Shu Wu received the Ph.D. degree in computer science from University of Sherbrooke, Canada in 2012. He is currently an associate professor at National Laboratory of Pattern Recognition, CASIA, China.

His research interests include data mining, network content analysis and security.

Liang Wang received the Ph. D. degree in pattern recognition and intelligent system from National Laboratory of Pattern Recognition (NLPR), Institute of Automation, Chinese Academy of Sciences, China in 2004. He is currently a professor at NLPR, CASIA, China.

His research interests include computer vision, pattern recognition, machine learning and data mining.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://doi.org/creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yin, QY., Yang, J., Huang, KQ. et al. AI in Human-computer Gaming: Techniques, Challenges and Opportunities. Mach. Intell. Res. (2023). https://doi.org/10.1007/s11633-022-1384-6

Download citation

  • Received: 18 August 2022

  • Accepted: 19 October 2022

  • Published: 07 January 2023

  • DOI: https://doi.org/10.1007/s11633-022-1384-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Human-computer gaming
  • AI
  • intelligent decision making
  • deep reinforcement learning
  • self-play
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.