Abstract
Brain-inspired computer vision aims to learn from biological systems to develop advanced image processing techniques. However, its progress so far is not impressing. We recognize that a main obstacle comes from that the current paradigm for brain-inspired computer vision has not captured the fundamental nature of biological vision, i.e., the biological vision is targeted for processing spatio-temporal patterns. Recently, a new paradigm for developing brain-inspired computer vision is emerging, which emphasizes on the spatio-temporal nature of visual signals and the brain-inspired models for processing this type of data. In this paper, we review some recent primary works towards this new paradigm, including the development of spike cameras which acquire spiking signals directly from visual scenes, and the development of computational models learned from neural systems that are specialized to process spatio-temporal patterns, including models for object detection, tracking, and recognition. We also discuss about the future directions to improve the paradigm.
This is a preview of subscription content, access via your institution.
References
A. Krizhevsky, I. Sutskever, G. E. Hinton. ImageNet classification with deep convolutional neural networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, vol. 1, pp. 1097–1105, 2012.
Y. LeCun, Y. Bengio, G. Hinton. Deep learning. Nature, vol. 521, no. 7553, pp. 436–444, 2015. DOI: https://doi.org/10.1038/nature14539.
R. Geirhos, C. R. M. Temme, J. Rauber, H. H. Schütt, M. Bethge, F. A. Wichmann. Generalisation in humans and deep neural networks. In Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montréal, Canada, pp. 7549–7561, 2018.
R. S. van Bergen, N. Kriegeskorte. Going in circles is the way forward: The role of recurrence in visual inference. Current Opinion in Neurobiology, vol. 65, pp. 176–193, 2020. DOI: https://doi.org/10.1016/j.conb.2020.11.009.
I. J. Goodfellow, J. Shlens, C. Szegedy. Explaining and harnessing adversarial examples. In Proceedings of the 3rd International Conference on Learning Representations, San Diego, USA, 2015.
K. M. He, X. Y. Zhang, S. Q. Ren, J. Sun. Deep residual learning for image recognition. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, pp. 770–778, 2016. DOI: https://doi.org/10.1109/CVPR.2016.90.
Y. X. Zhu, T. Gao, L. F. Fan, S. Y. Huang, M. Edmonds, H. X. Liu, F. Gao, C. Zhang, S. Y. Qi, Y. N. Wu, J. B. Tenenbaum, S. C. Zhu. Dark, beyond deep: A paradigm shift to cognitive AI with humanlike common sense. Engineering, vol. 6, no. 3, pp. 310–345, 2020. DOI: https://doi.org/10.1016/j.eng.2020.01.011.
D. Hassabis, D. Kumaran, C. Summerfield, M. Botvinick. Neuroscience-inspired artificial intelligence. Neuron, vol. 95, no. 2, pp. 245–258, 2017. DOI: https://doi.org/10.1016/j.neuron.2017.06.011.
T. J. Huang. Imitating the brain with neurocomputer a “new” way towards artificial general intelligence. International Journal of Automation and Computing, vol. 14, no. 5, pp. 520–531, 2017. DOI: https://doi.org/10.1007/s11633-017-1082-y.
D. D. Cox, T. Dean. Neural networks and neuroscience-inspired computer vision. Current Biology, vol. 24, no. 18, pp. R921–R929, 2014. DOI: https://doi.org/10.1016/j.cub.2014.08.026.
D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, D. Hassabis. Mastering the game of go with deep neural networks and tree search. Nature, vol. 529, no. 7587, pp. 484–489, 2016. DOI: https://doi.org/10.1038/nature16961.
J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool, R. Bates, A. Žídek, A. Potapenko, A. Bridgland, C. Meyer, S. A. A. Kohl, A. J. Ballard, A. Cowie, B. Romera-Paredes, S. Nikolov, R. Jain, J. Adler, T. Back, S. Petersen, D. Reiman, E. Clancy, M. Zielinski, M. Steinegger, M. Pacholska, T. Berghammer, S. Bodenstein, D. Silver, O. Vinyals, A. W. Senior, K. Kavukcuoglu, P. Kohli, D. Hassabis. Highly accurate protein structure prediction with AlphaFold. Nature, vol. 596, no. 7873, pp. 583–589, 2021. DOI: https://doi.org/10.1038/s41586-021-03819-2.
W. Wei. Neural mechanisms of motion processing in the mammalian retina. Annual Review of Vision Science, vol. 4, pp. 165–192, 2018. DOI: https://doi.org/10.1146/annurev-vision-091517-034048.
N. C. Rust, O. Schwartz, J. A. Movshon, E. P. Simoncelli. Spatiotemporal elements of macaque V1 receptive fields. Neuron, vol. 46, no. 6, pp. 945–956, 2005. DOI: https://doi.org/10.1016/j.neuron.2005.05.021.
C. D. Gilbert, W. Li. Top-down influences on visual processing. Nature Reviews Neuroscience, vol. 14, no. 5, pp. 350–363, 2013. DOI: https://doi.org/10.1038/nrn3476.
N. C. Rust, M. R. Cohen. Priority coding in the visual system. Nature Reviews Neuroscience, vol. 23, no. 6, pp. 376–388, 2022. DOI: https://doi.org/10.1038/s41583-022-00582-9.
M. Humphries. The Spike: An Epic Journey Through the Brain in 2.1 seconds, Princeton, USA: Princeton University Press, 2021.
M. Pfeiffer, T. Pfeil. Deep learning with spiking neurons: Opportunities and challenges. Frontiers in Neuroscience, vol. 12, Article number 774, 2018. DOI: https://doi.org/10.3389/fnins.2018.00774.
M. N. Shadlen, W. T. Newsome. Noise, neural codes and cortical organization. Current Opinion in Neurobiology, vol. 4, no. 4, pp. 569–579, 1994. DOI: https://doi.org/10.1016/0959-4388(94)90059-0.
M. Tsodyks, S. Wu. Short-term synaptic plasticity. Scholarpedia, vol. 8, no. 10, Article number 3153, 2013. DOI: https://doi.org/10.4249/scholarpedia.3153.
L. Zhu, J. N. Li, X. Wang, T. J. Huang, Y. H. Tian. NeuSpike-Net: High speed video reconstruction via bio-inspired neuromorphic cameras. In Proceedings of IEEE/CVF International Conference on Computer Vision, IEEE, Montréal, Canada, pp. 2380–2389, 2021. DOI: https://doi.org/10.1109/ICCV48922.2021.00240.
J. Zhao, R. Q. Xiong, H. F. Liu, J. Zhang, T. J. Huang. Spk2ImgNet: Learning to reconstruct dynamic scene from continuous spike stream. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Nashville, USA, pp. 11991–12000, 2021. DOI: https://doi.org/10.1109/CVPR46437.2021.01182.
L. Zhu, S. W. Dong, T. J. Huang, Y. H. Tian. A retina-inspired sampling method for visual texture reconstruction. In Proceedings of IEEE International Conference on Multimedia and Expo, Shanghai, China, pp. 1432–1437, 2019. DOI: https://doi.org/10.1109/ICME.2019.00248.
G. S. Tian, S. Y. Li, T. J. Huang, S. Wu. Excitation-inhibition balanced neural networks for fast signal detection. Frontiers in Computational Neuroscience, vol. 14, Article number 79, 2020. DOI: https://doi.org/10.3389/fncom.2020.00079.
Y. Y. Mi, C. C. A. Fung, K. Y. M. Wong, S. Wu. Spike frequency adaptation implements anticipative tracking in continuous attractor neural networks. In Proceedings of the 27th International Conference on Neural Information Processing Systems, Montréal, Canada, vol. 1, pp. 505–513, 2014.
X. H. Lin, X. L. Zou, Z. L. Ji, T. J. Huang, S. Wu, Y. Y. Mi. A brain-inspired computational model for spatio-temporal information processing. Neural Networks, vol. 143, pp. 74–87, 2021. DOI: https://doi.org/10.1016/j.neunet.2021.05.015.
Z. C. Bi, S. W. Dong, Y. H. Tian, T. J. Huang. Spike coding for dynamic vision sensors. In Proceedings of Data Compression Conference, IEEE, Snowbird, USA, pp. 117–126, 2018. DOI: https://doi.org/10.1109/DCC.2018.00020.
G. Gallego, T. Delbrück, G. Orchard, C. Bartolozzi, B. Taba, A. Censi, S. Leutenegger, A. J. Davison, J. Conradt, K. Daniilidis, D. Scaramuzza. Event-based vision: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 1, pp. 154–180, 2022. DOI: https://doi.org/10.1109/TPAMI.2020.3008413.
C. Posch, T. Serrano-Gotarredona, B. Linares-Barranco, T. Delbruck. Retinomorphic event-based vision sensors: Bioinspired cameras with spiking output. Proceedings of IEEE, vol. 102, no. 10, pp. 1470–1484, 2014. DOI: https://doi.org/10.1109/JPROC.2014.2346153.
A. M. Zador. A critique of pure learning and what artificial neural networks can learn from animal brains. Nature Communications, vol. 10, no. 1, Article number 3770, 2019. DOI: https://doi.org/10.1038/s41467-019-11786-6.
S. E. Raiguel, D. K. Xiao, V. L. Marcar, G. A. Orban. Response latency of macaque area Mt/V5 neurons and its relationship to stimulus parameters. Journal of Neurophysiology, vol. 82, no. 4, pp. 1944–1956, 1999. DOI: https://doi.org/10.1152/jn.1999.82.4.1944.
S. Thorpe, D. Fize, C. Marlot. Speed of processing in the human visual system. Nature, vol. 381, no. 6582, pp. 520–522, 1996. DOI: https://doi.org/10.1038/381520a0.
C. Van Vreeswijk, H. Sompolinsky. Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science, vol. 274, no. 5293, pp. 1724–1726, 1996. DOI: https://doi.org/10.1126/science.274.5293.1724.
W. R. Softky, C. Koch. The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. Journal of Neuroscience, vol. 13, no. 1, pp. 334–350, 1993. DOI: https://doi.org/10.1523/JNEUROSCI.13-01-00334.1993.
M. Zhou, F. X. Liang, X. R. Xiong, L. Li, H. F. Li, Z. J. Xiao, H. W. Tao, L. I. Zhang. Scaling down of balanced excitation and inhibition by active behavioral states in auditory cortex. Nature Neuroscience, vol. 17, no. 6, pp. 841–850, 2014. DOI: https://doi.org/10.1038/nn.3701.
Y. S. Shu, A. Hasenstaub, M. Badoual, T. Bal, D. A. McCormick. Barrages of synaptic activity control the gain and sensitivity of cortical neurons. Journal of Neuroscience, vol. 23, no. 32, pp. 10388–10401, 2003. DOI: https://doi.org/10.1523/JNEUROSCI.23-32-10388.2003.
B. V. Atallah, M. Scanziani. Instantaneous modulation of gamma oscillation frequency by balancing excitation with inhibition. Neuron, vol. 62, no. 4, pp. 566–577, 2009. DOI: https://doi.org/10.1016/j.neuron.2009.04.027.
M. Okun, I. Lampl. Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities. Nature Neuroscience, vol. 11, no. 5, pp. 535–537, 2008. DOI: https://doi.org/10.1038/nn.2105.
B. K. Hulse, V. Jayaraman. Mechanisms underlying the neural computation of head direction. Annual Review of Neuroscience, vol. 43, pp. 31–54, 2020. DOI: https://doi.org/10.1146/annurev-neuro-072116-031516.
S. S. Kim, H. Rouault, S. Druckmann, V. Jayaraman. Ring attractor dynamics in the Drosophila central brain. Science, vol. 356, no. 6340, pp. 849–853, 2017. DOI: https://doi.org/10.1126/science.aal4835.
L. G. Nowak, M. H. J. Munk, P. Girard, J. Bullier. Visual latencies in areas V1 and V2 of the macaque monkey. Visual Neuroscience, vol. 12, no. 2, pp. 371–384, 1995. DOI: https://doi.org/10.1017/S095252380000804X.
J. P. Bassett, M. B. Zugaro, G. M. Muir, E. J. Golob, R. U. Muller, J. S. Taube. Passive movements of the head do not abolish anticipatory firing properties of head direction cells. Journal of Neurophysiology, vol. 93, no. 3, pp. 1304–1316, 2005. DOI: https://doi.org/10.1152/jn.00490.2004.
J. Pei, L. Deng, S. Song, M. G. Zhao, Y. H. Zhang, S. Wu, G. R. Wang, Z. Zou, Z. Z. Wu, W. He, F. Chen, N. Deng, S. Wu, Y. Wang, Y. J. Wu, Z. Y. Yang, C. Ma, G. Q. Li, W. T. Han, H. L. Li, H. Q. Wu, R. Zhao, Y. Xie, L. P. Shi. Towards artificial general intelligence with hybrid Tianjic chip architecture. Nature, vol. 572, no. 7767, pp. 106–111, 2019. DOI: https://doi.org/10.1038/s41586-019-1424-8.
L. T. Yu, T. H. Chu, Z. Zhao, Y. Y. Mi, Y. C. Yang, S. Wu. Spiking continuous attractor neural networks with spike frequency adaptation for anticipative tracking. In Proceedings of IEEE International Workshop on Future Computing, Hangzhou, China, 2019. DOI: https://doi.org/10.1109/IWOFC48002.2019.9078445.
S. Wu, K. Y. M. Wong, C. C. A. Fung, Y. Y. Mi, W. H. Zhang. Continuous attractor neural networks: Candidate of a canonical model for neural information representation. F1000Research, vol. 5, Article number F1000, 2016. DOI: https://doi.org/10.12688/f1000research.7387.1.
R. J. Gardner, E. Hermansen, M. Pachitariu, Y. Burak, N. A. Baas, B. A. Dunn, M. B. Moser, E. I. Moser. Toroidal topology of population activity in grid cells. Nature, vol. 602, no. 7895, pp. 123–128, 2022. DOI: https://doi.org/10.1038/S41586-021-04268-7.
J. P. Goodridge, D. S. Touretzky. Modeling attractor deformation in the rodent head-direction system. Journal of Neurophysiology, vol. 83, no. 6, pp. 3402–3410, 2000. DOI: https://doi.org/10.1152/jn.2000.83.6.3402.
P. F. Wei, N. Liu, Z. J. Zhang, X. M. Liu, Y. Q. Tang, X. B. He, B. F. Wu, Z. Zhou, Y. H. Liu, J. Li, Y. Zhang, X. Y. Zhou, L. Xu, L. Chen, G. Q. Bi, X. T. Hu, F. Q. Xu, L. P. Wang. Processing of visually evoked innate fear by a noncanonical thalamic pathway. Nature Communications, vol. 6, Article number 6756, 2015. DOI: https://doi.org/10.1038/ncomms7756.
B. De Gelder, M. Tamietto, G. Van Boxtel, R. Goebel, A. Sahraie, J. Van den Stock, B. M. C. Stienen, L. Weiskrantz, A. Pegna. Intact navigation skills after bilateral loss of striate cortex. Current Biology, vol. 18, no. 24, pp. R1128–R1129, 2008. DOI: https://doi.org/10.1016/j.cub.2008.11.002.
G. De Franceschi, T. Vivattanasarn, A. B. Saleem, S. G. Solomon. Vision guides selection of freeze or flight defense strategies in mice. Current Biology, vol. 26, no. 16, pp. 2150–2154, 2016. DOI: https://doi.org/10.1016/j.cub.2016.06.006.
S. D. Gale, G. J. Murphy. Distinct representation and distribution of visual information by specific cell types in mouse superficial superior colliculus. Journal of Neuroscience, vol. 34, no. 40, pp. 13458–13471, 2014. DOI: https://doi.org/10.1523/JNEUROSCI.2768-14.2014.
K. W. Latimer, A. C. Huk. Superior colliculus activates new perspectives on decision-making. Nature Neuroscience, vol. 24, no. 8, pp. 1048–1050, 2021. DOI: https://doi.org/10.1038/s41593-021-00885-7.
I. B. Yildiz, H. Jaeger, S. J. Kiebel. Re-visiting the echo state property. Neural Networks, vol. 35, pp. 1–9, 2012. DOI: https://doi.org/10.1016/j.neunet.2012.07.005.
K. F. Wong, X. J. Wang. A recurrent network mechanism of time integration in perceptual decisions. Journal of Neuroscience, vol. 26, no. 4, pp. 1314–1328, 2006. DOI: https://doi.org/10.1523/JNEUROSCI.3733-05.2006.
D. Sussillo, L. F. Abbott. Generating coherent patterns of activity from chaotic neural networks. Neuron, vol. 63, no. 4, pp. 544–557, 2009. DOI: https://doi.org/10.1016/j.neuron.2009.07.018.
W. Maass. Networks of spiking neurons: The third generation of neural network models. Neural Networks, vol. 10, no. 9, pp. 1659–1671, 1997. DOI: https://doi.org/10.1016/S0893-6080(97)00011-7.
S. Denève, A. Alemi, R. Bourdoukan. The brain as an efficient and robust adaptive learner. Neuron, vol. 94, no. 5, pp. 969–977, 2017. DOI: https://doi.org/10.1016/j.neuron.2017.05.016.
K. Roy, A. Jaiswal, P. Panda. Towards spike-based machine intelligence with neuromorphic computing. Nature, vol. 575, no. 7784, pp. 607–617, 2019. DOI: https://doi.org/10.1038/s41586-019-1677-2.
B. Cramer, S. Billaudelle, S. Kanya, A. Leibfried, A. Grübl, V. Karasenko, C. Pehle, K. Schreiber, Y. Stradmann, J. Weis, J. Schemmel, F. Zenke. Surrogate gradients for analog neuromorphic computing. Proceedings of the National Academy of Sciences of the United States of America, vol. 119, no. 4, Article number e2109194119, 2022. DOI: https://doi.org/10.1073/pnas.2109194119.
Y. P. Guo, X. L. Zou, Y. F. Hu, Y. F. Yang, X. X. Wang, Y. H. He, R. K. Kong, Y. Z. Guo, G. Q. Li, W. Zhang, S. Wu, H. L. Li. A Marr’s three-level analytical framework for neuromorphic electronic systems. Advanced Intelligent Systems, vol. 3, no. 11, Article number 2100054, 2021. DOI: https://doi.org/10.1002/aisy.202100054.
F. Zenke, S. M. Bohté, C. Clopath, I. M. Comşa, J. Göltz, W. Maass, T. Masquelier, R. Naud, E. O. Neftci, M. A. Petrovici, F. Scherr, D. F. M. Goodman. Visualizing a joint future of neuroscience and neuromorphic engineering. Neuron, vol. 109, no. 4, pp. 571–575, 2021. DOI: https://doi.org/10.1016/j.neuron.2021.01.009.
T. Gollisch, M. Meister. Eye smarter than scientists believed: Neural computations in circuits of the retina. Neuron, vol. 65, no. 2, pp. 150–164, 2010. DOI: https://doi.org/10.1016/j.neuron.2009.12.009.
L. Xiao, M. S. Zhang, D. J. Xing, P. J. Liang, S. Wu. Shifted encoding strategy in retinal luminance adaptation: From firing rate to neural correlation. Journal of Neurophysiology, vol. 110, no. 8, pp. 1793–1803, 2013. DOI: https://doi.org/10.1152/jn.00221.2013.
G. Chen, S. Q. Qu, Z. J. Li, H. T. Zhu, J. X. Dong, M. Liu, J. Conradt. Neuromorphic vision-based fall localization in event streams with temporal-spatial attention weighted network. IEEE Transactions on Cybernetics, vol. 52, no. 9, pp. 9251–9262, 2022. DOI: https://doi.org/10.1109/TCYB.2022.3164882.
G. Chen, P. G. Liu, Z. F. Liu, H. J. Tang, L. Hong, J. H. Dong, J. Conradt, A. Knoll. NeuroAED: Towards efficient abnormal event detection in visual surveillance with neuromorphic vision sensor. IEEE Transactions on Information Forensics and Security, vol. 16, pp. 923–936, 2021. DOI: https://doi.org/10.1109/TIFS.2020.3023791.
G. Chen, H. Cao, J. Conradt, H. J. Tang, F. Rohrbein, A. Knoll. Event-based neuromorphic vision for autonomous driving: A paradigm shift for bio-inspired visual sensing and perception. IEEE Signal Processing Magazine, vol. 37, no. 4, pp. 34–49, 2020. DOI: https://doi.org/10.1109/MSP.2020.2985815.
A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. M. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. J. Bai, S. Chintala. PyTorch: An imperative style, high-performance deep learning library. In Proceedings of the 33rd International Conference on Neural Information Processing Systems, Vancouver, Canada, Article number 721, 2019.
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. F. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Q. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Q. Zheng. TensorFlow: Large-scale machine learning on heterogeneous distributed systems, [Online], Available: https://arxiv.org/abs/1603.04467, 2016.
C. M. Wang, Y. Q. Jiang, X. Y. Liu, X. H. Lin, X. L. Zou, Z. L. Ji, S. Wu. A just-in-time compilation approach for neural dynamics simulation. In Proceedings of the 28th International Conference on Neural Information Processing, Springer, Bali, Indonesia, pp. 15–26, 2021. DOI: https://doi.org/10.1007/978-3-030-92238-2_2.
Acknowledgements
This work was supported by National Key R&D Program of China (No. 2020AAA0105200), Science and Technology Innovation 2030-Brain Science and Brain-inspired Intelligence Project (No. 2021ZD0200204), National Key Research and Development Program of China (No. 2020AAA0130401), Huawei Technology Co., Ltd, China (No. YBN2019105137).
Author information
Authors and Affiliations
Corresponding author
Additional information
Colored figures are available in the online version at https://link.springer.com/journal/11633
Xiao-Long Zou received B. Sc. degree in vehicle engineering from Jilin University, China in 2012, and the Ph. D. degree in system theory from Beijing Normal University, China in 2018. Currently, he is a postdoctoral fellow in Beijing Academy of Artificial Intelligence and School of Psychological and Cognitive Sciences, Peking University, China.
His research interests include computational neuroscience and brain-inspired computing.
Tie-Jun Huang (Senior Member, IEEE) received the Ph. D. degree in pattern recognition and intelligent system from the Huazhong (Central China) University of Science and Technology, China in 1998. He is currently a professor in School of Computer Science, Peking University, China, and the director of Beijing Academy for Artificial Intelligence. He has published two books, more than 200 peer-reviewed papers on leading journals and conferences, held more than 50 granted patents, and is the co-editor of four ISO/IEC standards, five national standards of China, and four IEEE standards.
He is a fellow of CAAI and CCF, the Secretary General of the Artificial Intelligence Industry Technology Innovation Alliance, and the vice chair of the China National General Group on AI Standardization. He received the National Award for Science and Technology of China (Tier-2) for three times. He was awarded the Distinguished Young Scholar by the National Natural Science Foundation of China in 2014 and the Distinguished Professor of the Chang Jiang Scholars Program by the Ministry of Education of China in 2015.
His research interests include visual information processing and neuromorphic computing.
Si Wu received the B. Sc. degree in general physics in 1990, the M. Sc degree in general relativity in 1992, and the Ph. D. degree in statistical physics in 1995, all from Beijing Normal University, China. Currently, he is a professor in School of Psychological and Cognitive Sciences, PI in PKU-IDG/McGovern Institute for Brain Research, PI in Center for Quantitative Biology, and PI in PKU-Tsinghua Center for Life Sciences, Peking University, China. He is also a researcher in Beijing Academy of Artificial Intelligence, China, and Co-Editor-in-Chief of Frontiers in Computational Neuroscience.
His research interests include computational neuroscience and brain-inspired computing.
Rights and permissions
About this article
Cite this article
Zou, XL., Huang, TJ. & Wu, S. Towards a New Paradigm for Brain-inspired Computer Vision. Mach. Intell. Res. 19, 412–424 (2022). https://doi.org/10.1007/s11633-022-1370-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11633-022-1370-z
Keywords
- Brain-inspired computer vision
- spatio-temporal patterns
- object detection
- object tracking
- object recognition