V. Vaish, B. Wilburn, N. Joshi, M. Levoy. Using plane + parallax for calibrating dense camera arrays. In Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE, Washington DC, USA, Article number 1, 2004. DOI: https://doi.org/10.1109/CVPR.2004.1315006.
Book
Google Scholar
V. Vaish, M. Levoy, R. Szeliski, C. L. Zitnick, S. B. Kang. Reconstructing occluded surfaces using synthetic apertures: Stereo, focus and robust measures. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, New York, USA, pp. 2331–2338, 2006. DOI: https://doi.org/10.1109/CVPR.2006.244.
Google Scholar
D. Falanga, K. Kleber, D. Scaramuzza. Dynamic obstacle avoidance for quadrotors with event cameras. Science Robotics, vol. 5, no. 40, Article number eaaz9712, 2020. DOI: https://doi.org/10.1126/scirobotics.aaz9712.
Google Scholar
N. Joshi, S. Avidan, W. Matusik, D. J. Kriegman. Synthetic aperture tracking: Tracking through occlusions In Proceedings of the 11th International Conference on Computer Vision, IEEE, Rio de Janeiro, Brazil, 2007. DOI: https://doi.org/10.1109/ICCV.2007.4409032.
Google Scholar
T. Yang, Y. N. Zhang, X. M. Tong, X. Q. Zhang, R. Yu. A new hybrid synthetic aperture imaging model for tracking and seeing people through occlusion. IEEE Transactions on Circuits and Systems for Video Technology, vol. 23, no. 9, pp. 1461–1475, 2013. DOI: https://doi.org/10.1109/TCSVT.2013.2242553.
Article
Google Scholar
Z. Pei, Y. N. Zhang, T. Yang, X. W. Zhang, Y. H. Yang. A novel multi-object detection method in complex scene using synthetic aperture imaging. Pattern Recognition, vol. 45, no. 4, pp. 1637–1658, 2012. DOI: https://doi.org/10.1016/j.patcog.2011.10.003.
Article
Google Scholar
Z. L. Xiao, L. P. Si, G. Q. Zhou. Seeing beyond foreground occlusion: A joint framework for SAP-based scene depth and appearance reconstruction. IEEE Journal of Selected Topics in Signal Processing, vol. 11, no. 7, pp. 979–991, 2017. DOI: https://doi.org/10.1109/JSTSP.2017.2715012.
Article
Google Scholar
Z. Pei, Y. N. Zhang, X. D. Chen, Y. H. Yang. Synthetic aperture imaging using pixel labeling via energy minimization. Pattern Recognition, vol. 46, no. 1, pp. 174–187, 2013. DOI: https://doi.org/10.1016/j.patcog.2012.06.014.
Article
Google Scholar
Y. Q. Wang, T. H. Wu, J. G. Yang, L. G. Wang, W. An, Y. L. Guo. DeOccNet: Learning to see through foreground occlusions in light fields. In Proceedings of IEEE Winter Conference on Applications of Computer Vision, IEEE, Snowmass, USA, pp. 118–127, 2020. DOI: https://doi.org/10.1109/WACV45572.2020.9093448.
Google Scholar
C. Brandli, R. Berner, M. H. Yang, S. C. Liu, T. Delbruck. A 240×180 130 dB 3 µs latency global shutter spatiotemporal vision sensor. IEEE Journal of Solid-state Circuits, vol. 49, no. 10, pp. 2333–2341, 2014. DOI: https://doi.org/10.1109/JSSC.2014.2342715.
Article
Google Scholar
Y. J. Li, H. Zhou, B. B. Yang, Y. Zhang, Z. P. Cui, H. J. Bao, G. F. Zhang. Graph-based asynchronous event processing for rapid object recognition. In Proceedings of IEEE/CVF International Conference on Computer Vision, IEEE, Montreal, Canada, pp. 914–923, 2021. DOI: https://doi.org/10.1109/ICCV48922.2021.00097.
Google Scholar
Y. Bi, A. Chadha, A. Abbas, E. Bourtsoulatze, Y. Andreopoulos. Graph-based object classification for neuromorphic vision sensing. In Proceedings of IEEE/CVF International Conference on Computer Vision, IEEE, Seoul, Korea, pp. 491–501, 2019. DOI: https://doi.org/10.1109/ICCV.2019.00058.
Google Scholar
L. Y. Pan, C. Scheerlinck, X. Yu, R. Hartley, M. M. Liu, Y. C. Dai. Bringing a blurry frame alive at high frame-rate with an event camera. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Long Beach, USA, pp. 6813–6822, 2019. DOI: https://doi.org/10.1109/CVPR.2019.00698.
Google Scholar
H. Rebecq, R. Ranftl, V. Koltun, D. Scaramuzza. High speed and high dynamic range video with an event camera. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, no. 6, pp. 1964–1980, 2021. DOI: https://doi.org/10.1109/TPAMI.2019.2963386.
Article
Google Scholar
Z. Jiang, Y. Zhang, D. Q. Zou, J. Ren, J. C. Lv, Y. B. Liu. Learning event-based motion deblurring. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Seattle, USA, pp. 3317–3326, 2020. DOI: https://doi.org/10.1109/CVPR42600.2020.00338.
Google Scholar
S. Tulyakov, D. Gehrig, S. Georgoulis, J. Erbach, M. Gehrig, Y. Y. Li, D. Scaramuzza. Time lens: Event-based video frame interpolation. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Nashville, USA, pp. 16150–16159, 2021. DOI: https://doi.org/10.1109/CVPR46437.2021.01589.
Google Scholar
J. J. Hagenaars, F. Paredes-Vallés, G. de Croon. Self-supervised learning of event-based optical flow with spiking neural networks. In Proceedings of the 34th International Conference on Neural Information Processing Systems, pp. 7167–7179, 2021.
H. Akolkar, S. H. Ieng, R. Benosman. Real-time high speed motion prediction using fast aperture-robust event-driven visual flow. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 1, pp. 361–372, 2022. DOI: https://doi.org/10.1109/TPAMI.2020.3010468.
Google Scholar
L. Y. Pan, M. M. Liu, R. Hartley. Single image optical flow estimation with an event camera. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Seattle, USA, pp. 1669–1678, 2020. DOI: https://doi.org/10.1109/CVPR42600.2020.00174.
H. Kim, S. Leutenegger, A. J. Davison. Real-time 3D reconstruction and 6-DoF tracking with an event camera. In Proceedings of the 14th European Conference on Computer Vision, Springer, Amsterdam, The Netherlands, pp. 349–364, 2016. DOI: https://doi.org/10.1007/978-3-319-46466-4_21.
Google Scholar
G. Gallego, H. Rebecq, D. Scaramuzza. A unifying contrast maximization framework for event cameras, with applications to motion, depth, and optical flow estimation. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Salt Lake City, USA, pp. 3867–3876, 2018. DOI: https://doi.org/10.1109/CVPR.2018.00407.
X. Zhang, W. Liao, L. Yu, W. Yang, G. S. Xia. Event-based synthetic aperture imaging with a hybrid network. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Nashville, USA, pp. 14230–14239, 2021. DOI: https://doi.org/10.1109/CVPR46437.2021.01401.
Google Scholar
S. Q. Li, Y. T. Feng, Y. P. Li, Y. Jiang, C. Q. Zou, Y. Gao. Event stream super-resolution via spatiotemporal constraint learning. In Proceedings of IEEE/CVF International Conference on Computer Vision, IEEE, Montreal, Canada, pp. 4460–4469, 2021. DOI: https://doi.org/10.1109/ICCV48922.2021.00444.
Google Scholar
J. Wang, Y. H. Zhou, H. F. Sima, Z. Q. Huo, A. Z. Mi. Image inpainting based on structural tensor edge intensity model. International Journal of Automation and Computing, vol. 18, no. 2, pp. 256–265, 2021. DOI: https://doi.org/10.1007/s11633-020-1256-x.
Article
Google Scholar
E. M. Izhikevich. Simple model of spiking neurons. IEEE Transactions on Neural Networks, vol. 14, no. 6, pp. 1569–1572, 2003. DOI: https://doi.org/10.1109/TNN.2003.820440.
MathSciNet
Article
Google Scholar
A. L. Hodgkin, A. F. Huxley. A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, vol. 117, no. 4, pp. 500–544, 1952. DOI: https://doi.org/10.1113/jphysiol.1952.sp004764.
Article
Google Scholar
W. Gerstner. Time structure of the activity in neural network models. Physical Review E, vol. 51, no. 1, pp. 738–758, 1995. DOI: https://doi.org/10.1103/PhysRevE.51.738.
MathSciNet
Article
Google Scholar
B. Yang, G. Bender, Q. V. Le, J. Ngiam. CondConv: Conditionally parameterized convolutions for efficient inference. In Proceedings of the 33rd International Conference on Neural Information Processing Systems, Vancouver, Canada, Article number 117, 2019.
C. Z. Wu, J. Sun, J. Wang, L. F. Xu, S. Zhan. Encoding-decoding network with pyramid self-attention module for retinal vessel segmentation. International Journal of Automation and Computing, vol. 18, no. 6, pp. 973–980, 2021. DOI: https://doi.org/10.1007/s11633-020-1277-0.
Article
Google Scholar
L. C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, A. L. Yuille. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 4, pp. 834–848, 2018. DOI: https://doi.org/10.1109/TPAMI.2017.2699184.
Article
Google Scholar
R. Zhang, P. Isola, A. A. Efros, E. Shechtman, O. Wang. The unreasonable effectiveness of deep features as a perceptual metric. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Salt Lake City, USA, pp. 586–595, 2018. DOI: https://doi.org/10.1109/CVPR.2018.00068.
Google Scholar
K. Simonyan, A. Zisserman. Very deep convolutional networks for large-scale image recognition. In Proceedings of the 3rd International Conference on Learning Representations, San Diego, USA, 2015.
J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, L. Fei-Fei. ImageNet: A large-scale hierarchical image database. In IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Miami, USA, pp. 248–255, 2009. DOI: https://doi.org/10.1109/CVPR.2009.5206848.
Google Scholar
J. Johnson, A. Alahi, L. Fei-Fei. Perceptual losses for realtime style transfer and super-resolution. In Proceedings of the 14th European Conference on Computer Vision, Springer, Amsterdam, The Netherlands, pp. 694–711, 2016. DOI: https://doi.org/10.1007/978-3-319-46475-6_43.
Google Scholar
S. B. Shrestha, G. Orchard. SLAYER: Spike layer error reassignment in time. In Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montreal, Canada, pp. 1419–1428, 2018.
D. P. Kingma, J. Ba. Adam: A method for stochastic optimization. In Proceedings of the 3rd International Conference on Learning Representations, San Diego, USA, 2015.
I. Loshchilov, F. Hutter. SGDR: Stochastic gradient descent with warm restarts. In Proceedings of the 5th International Conference on Learning Representations, Toulon, France, 2017.
A. Z. Zhu, L. Z. Yuan, K. Chaney, K. Daniilidis. Unsupervised event-based learning of optical flow, depth, and ego-motion. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Long Beach, USA, pp. 989–997, 2019. DOI: https://doi.org/10.1109/CVPR.2019.00108.
Google Scholar