U. Fayyad, G. Piatetsky-Shapiro, P. Smyth. From data mining to knowledge discovery in databases. AI Magazine, vol. 17, no. 3, pp. 37–54, 1996. DOI: https://doi.org/10.1609/aimag.v17i3.1230.
Google Scholar
S. Riedel, L. M. Yao, A. McCallum, B. M. Marlin. Relation extraction with matrix factorization and universal schemas. In Proceedings of Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, ACL, Atlanta, USA, pp. 74–84, 2013.
Google Scholar
A. S. d’Avila Garcez, K. Broda, D. M. Gabbay. Symbolic knowledge extraction from trained neural networks: A sound approach. Artificial Intelligence, vol. 125, no. 1–2, pp. 155–207, 2001. DOI: https://doi.org/10.1016/S0004-3702(00)00077-1.
MathSciNet
MATH
Google Scholar
S. Russell, P. Norvig. Artificial Intelligence: A Modern Approach, 3rd ed., Harlow, USA: Pearson Education, 2010.
MATH
Google Scholar
D. Jurafsky, J. H. Martin. Speech and Language Processing, [Online], Available: https://web.stanford.edu/~jurafsky/slp3/ed3book_dec302020.pdf, 2021.
T. Rocktäschel, S. Singh, S. Riedel. Injecting logical background knowledge into embeddings for relation extraction. In Proceedings of Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, ACL, Denver, USA, pp. 1119–1129, 2015. DOI: https://doi.org/10.3115/v1/N15-1118.
Google Scholar
S. Hochreiter, J. Schmidhuber. Long short-term memory. Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997. DOI: https://doi.org/10.1162/neco.1997.9.8.1735.
Google Scholar
J. Devlin, M. W. Chang, K. Lee, K. Toutanova. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), ACL, Minneapolis, USA, pp. 4171–4186, 2019. DOI: https://doi.org/10.18653/v1/N19-1423.
Google Scholar
E. F. Tjong Kim Sang, F. De Meulder. Introduction to the CoNLL-2033 shared task: Language-independent named entity recognition. In Proceedings of the 7th Conference on Natural Language Learning at HLT-NAACL 2003, ACL, Edmonton, Canada, pp. 142–147, 2003.
Google Scholar
E. Hovy, M. Marcus, M. Palmer, L. Ramshaw, R. Weischedel. OntoNotes: The 90% solution. In Proceedings of the Human Language Technology Conference of the NAACL, Companion Volume: Short Papers, Association for Computational Linguistics, New York City, USA, pp. 57–60, 2006.
Google Scholar
J. P. C. Chiu, E. Nichols. Named entity recognition with bidirectional LSTM-CNNs. Transactions of the Association for Computational Linguistics, vol. 4, pp. 357–370, 2016. DOI: https://doi.org/10.1162/tacl_a_00104.
Google Scholar
R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, P. Kuksa. Natural language processing (Almost) from scratch. The Journal of Machine Learning Research, vol. 12, pp. 2493–2537, 2011.
MATH
Google Scholar
A. Passos, V. Kumar, A. McCallum. Lexicon infused phrase embeddings for named entity resolution. In Proceedings of the 18th Conference on Computational Natural Language Learning, ACL, Ann Arbor, USA, pp. 78–86, 2014. DOI: https://doi.org/10.3115/v1/W14-1609.
Google Scholar
D. E. Appelt, J. R. Hobbs, J. Bear, D. J. Israel, M. Tyson. FASTUS: A finite-state processor for information extraction from real-world text. In Proceedings of the 13th International Joint Conference on Artificial Intelligence, Morgan Kaufmann, Chambery, France, pp. 1172–1178, 1993.
Google Scholar
T. Eftimov, B. K. Seljak, P. Korošec!. A rule-based named-entity recognition method for knowledge extraction of evidence-based dietary recommendations. PLoS One, vol. 12, no. 6, Article number e0179488, 2017. DOI: https://doi.org/10.1371/journal.pone.0179488.
Google Scholar
H. Isozaki, H. Kazawa. Efficient support vector classifiers for named entity recognition. In Proceedings of the 19th International Conference on Computational Linguistics, ACL, Taipei, China, pp. 1–7, 2002. DOI: https://doi.org/10.3115/1072228.1072282.
Google Scholar
J. D. Lafferty, A. McCallum, F. C. N. Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In Proceedings of the 18th International Conference on Machine Learning, Morgan Kaufmann Publishers Inc., San Francisco, USA, pp. 282–289, 2001.
Google Scholar
A. McCallum, W. Li. Early results for named entity recognition with conditional random fields, feature induction and web-enhanced lexicons. In Proceedings of the 7th Conference on Natural Language Learning at HLT-NAACL 2003, ACL, Edmonton, Canada, pp. 188–191, 2003. DOI: https://doi.org/10.3115/1119176.1119206.
Google Scholar
Z. H. Huang, W. Xu, K. Yu. Bidirectional LSTM-CRF models for sequence tagging. [Online], Avaiable: https://arxiv.org/abs/1508.01991, 2015.
X. Z. Ma, E. Hovy. End-to-end sequence labeling via Bidirectional LSTM-CNNs-CRF. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL, Berlin, Germany, pp. 1064–1074, 2016. DOI: https://doi.org/10.18653/v1/P16-1101.
Google Scholar
G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, C. Dyer. Neural architectures for named entity recognition. In Proceedings of Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, ACL, San Diego, USA, pp. 260–270, 2016. DOI: https://doi.org/10.18653/v1/N16-1030.
Google Scholar
J. Hammerton. Named entity recognition with long short-term memory. In Proceedings of the 7th Conference on Natural Language Learning at HLT-NAACL 2003, ACL, Edmonton, Canada, pp. 172–175, 2003. DOI: https://doi.org/10.3155/1119176.1119202.
Google Scholar
A. Akbik, D. Blythe, R. Vollgraf. Contextual string embeddings for sequence labeling. In Proceedings of the 27th International Conference on Computational Linguistics, ACL, Santa Fe, USA, pp. 1638–1649, 2018.
Google Scholar
A. Akbik, T. Bergmann, R. Vollgraf. Pooled contextualized embeddings for named entity recognition. In Proceedings of Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), ACL, Minneapolis, USA, pp. 724–728, 2019. DOI: https://doi.org/10.18653/v1/N19-1078.
Google Scholar
K. Liu, Y. Fu, C. Q. Tan, M. S. Chen, N. Y. Zhang, S. F. Huang, S. Gao. Noisy-labeled NER with confidence estimation. to Proceedings of Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, ACL, pp. 3437–3445, 2021. DOI: https://doi.org/10.18653/v1/2021.naacl-main.269.
D. J. Zeng, K. Liu, Y. B. Chen, J. Zhao. Distant supervision for relation extraction via piecewise convolutional neural networks. In Proceedings of Conference on Empirical Methods in Natural Language Processing, ACL, Lisbon, Portugal, pp. 1753–1762, 2015. DOI: https://doi.org/10.18653/v1/D15-1203.
Google Scholar
E. Sandhaus. The New York Times Annotated Corpus LDC2008T19. Philadelphia, USA, 2008. DOI: https://doi.org/10.35111/77ba-9x74.
Y. H. Zhang, V. Zhong, D. Q. Chen, G. Angeli, C. D. Manning. Position-aware attention and supervised data improve slot filling. In Proceedings of Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, Copenhagen, Denmark, pp. 35–45, 2017. DOI: https://doi.org/10.18653/v1/D17-1004.
Google Scholar
H. Ji, R. Grishman, H. T. Dang, K. Griffitt, J. Ellis. Overview of the TAC knowledge base population track. In Proceedings of Text Analysis Conference, 2010.
G. R Doddington, A Mitchell, M. A. Przybocki, L. A. Ramshaw, S. M. Strassel, R. M. Weischedel. The automatic content extraction (ACE) program — tasks, data, and evaluation. In Proceedings of the 4th International Conference on Language Resources and Evaluation, European Language Resources Association, Lisbon, Portugal, pp. 837–840, 2004.
Google Scholar
S. M. Strassel, M. A. Przybocki, K. Peterson, Z. Y. Song, K. Maeda. Linguistic resources and evaluation techniques for evaluation of cross-document automatic content extraction. In Proceedings of the 6th International Conference on Language Resources and Evaluation, European Language Resources Association, Marrakech, USA, pp. 2706–2709, 2008.
Google Scholar
I. Hendrickx, S. N. Kim, Z. Kozareva, P. Nakov, D. Séaghdha, S. Padó, M. Pennacchiotti, L. Romano, S. Szpakowicz. SemEval-2010 Task 8: Multi-way classification of semantic relations between pairs of nominals. In Proceedings of the 5th International Workshop on Semantic Evaluation, Association for Computational Linguistics, Uppsala, Sweden, pp. 33–38, 2010.
Google Scholar
M. Banko, O. Etzioni. The tradeoffs between open and traditional relation extraction. In Proceedings of the 46th Annual Meeting of the Association for Computational Linguistics, ACL, Columbus, USA, pp. 28–36, 2008.
Google Scholar
R. C. Bunescu, R. J. Mooney. Subsequence kernels for relation extraction. In Proceedings of the 18th International Conference on Neural Information Processing Systems, MIT Press, Vancouver, Canada, pp. 171–178, 2005.
Google Scholar
G. D. Zhou, J. Su, J. Zhang, M. Zhang. Exploring various knowledge in relation extraction. In Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, ACL, Ann Arbor, USA, pp. 427–434, 2005. DOI: https://doi.org/10.3115/1219840.1219893.
Google Scholar
A. Culotta, J. Sorensen. Dependency tree kernels for relation extraction. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, ACL, Barcelona, Spain, pp. 423–429, 2004. DOI: https://doi.org/10.3115/1218955.1219009.
Google Scholar
Q. Li, H. Ji. Incremental joint extraction of entity mentions and relations. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL, Baltimore, USA, pp. 402–412, 2014.
Google Scholar
M. Miwa, M. Bansal. End-to-end relation extraction using LSTMs on sequences and tree structures. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL, Berlin, Germany, pp. 1105–1116, 2016. DOI: https://doi.org/10.18653/v1/P16-1105.
Google Scholar
B. W. Yu, Z. Y. Zhang, X. B. Shu, T. W. Liu, Y. B. Wang, B. Wang, S. J. Li. Joint extraction of entities and relations based on a novel decomposition strategy. In Proceedings of the 24th European Conference on Artificial Intelligence, Santiago de Compostela, Spain, pp. 2282–2289, 2020.
Google Scholar
T. J. Fu, P. H. Li, W. Y. Ma. GraphRel: Modeling text as relational graphs for joint entity and relation extraction. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, ACL, Florence, Italy, pp. 1409–1418, 2019. DOI: https://doi.org/10.18653/v1/P19-1136.
Google Scholar
X. Y. Li, F. Yin, Z. J. Sun, X. Y. Li, A. Yuan, D. Chai, M. X. Zhou, J. W. Li. Entity-relation extraction as multi-turn question answering. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, ACL, Florence, Italy, pp. 1340–1350, 2019. DOI: https://doi.org/10.18653/v1/P19-1129.
Google Scholar
I. Beltagy, K. Lo, A. Cohan. SciBERT: A pretrained language model for scientific text. In Proceedings of Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Association for Computational Linguistics, Hong Kong, China, pp. 3615–3620, 2019. DOI: https://doi.org/10.18653/v1/D19-1371.
Google Scholar
H. Y. Zheng, R. Wen, X. Chen, Y. F. Yang, Y. Y. Zhang, Z. H. Zhang, N. Y. Zhang, B. Qin, X. Ming, Y. F. Zheng. PRGC: Potential relation and global correspondence based joint relational triple extraction. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), ACL, pp. 6225–6235, 2021. DOI: https://doi.org/10.18653/v1/2021.acl-long.486.
T. Lai, H. Ji, C. X. Zhai, Q. H. Tran. Joint biomedical entity and relation extraction with knowledge-enhanced collective inference. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), ACL, pp. 6248–6260, 2021. DOI: https://doi.org/10.18653/v1/2021.acl-long.488.
J. Wang, W. Lu. Two are better than one: Joint entity and relation extraction with table-sequence encoders. In Proceedings of Conference on Empirical Methods in Natural Language Processing, ACL, pp. 1706–1721, 2000. DOI: https://doi.org/10.18653/v1/2020.emnlp-main.133.
M. Mintz, S. Bills, R. Snow, D. Jurafsky. Distant supervision for relation extraction without labeled data. In Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP, ACL, Suntec, Singapore, pp. 1003–1011, 2009.
Google Scholar
C. J. Xiao, Y. Yao, R. B. Xie, X. Han, Z. Y. Liu, M. S. Sun, F. Lin, L. Y. Lin. Denoising relation extraction from document-level distant supervision. In Proceedings of Conference on Empirical Methods in Natural Language Processing, ACL, pp. 3683–3688, 2020. DOI: https://doi.org/10.18653/v1/2020.emnlp-main.300.
S. Riedel, L. M. Yao, A. McCallum. Modeling relations and their mentions without labeled text. In Proceedings of European Conference on Machine Learning and Knowledge Discovery in Databases, Springer, Berlin, Germany, pp. 148–163, 2010. DOI: https://doi.org/10.1007/978-3-642-15939-8_10.
Google Scholar
T. G. Dietterich, R. H. Lathrop, T. Lozano-Pérez. Solving the multiple instance problem with axis-parallel rectangles. Artificial Intelligence, vol. 89, no. 1–2, pp. 31–71, 1997. DOI: https://doi.org/10.1016/S0004-3702(96)00034-3.
MATH
Google Scholar
G. L. Ji, K. Liu, S. Z. He, J. Zhao. Distant supervision for relation extraction with sentence-level attention and entity descriptions. In Proceedings of the 31st AAAI Conference on Artificial Intelligence, AAAI, San Francisco, USA, pp. 3060–3066, 2017.
Google Scholar
Y. K. Lin, S. Q. Shen, Z. Y. Liu, H. B. Luan, M. S. Sun. Neural relation extraction with selective attention over instances. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL, Berlin, Germany, pp. 2124–2133, 2016. DOI: https://doi.org/10.18653/v1/P16-1200.
Google Scholar
Z. X. Ye, Z. H. Ling. Distant supervision relation extraction with intra-bag and inter-bag attentions. In Proceedings of Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), ACL, Minneapolis, USA, pp. 2810–2819, 2019. DOI: https://doi.org/10.18653/v1/N19-1288.
Google Scholar
G. Y. Wang, W. Zhang, R. X. Wang, Y. L. Zhou, X. Chen, W. Zhang, H. Zhu, H. J. Chen. Label-free distant supervision for relation extraction via knowledge graph embedding. In Proceedings of Conference on Empirical Methods in Natural Language Processing, ACL, Brussels, Belgium, pp. 2246–2255, 2018. DOI: https://doi.org/10.18653/v1/D18-1248.
Google Scholar
A. Bordes, N. Usunier, A. Garcia-Durán, J. Weston, O. Yakhnenko. Translating embeddings for modeling multi-relational data. In Proceedings of the 26th International Conference on Neural Information Processing Systems Lake Tahoe, USA, pp. 2787–2795, 2013.
Z. Wang, J. W. Zhang, J. L. Feng, Z. Chen. Knowledge graph embedding by translating on hyperplanes. In Proceedings of the 28th AAAI Conference on Artificial Intelligence, AAAI, Quebec City, Canada, pp. 1112–1119, 2014.
Google Scholar
Y. K. Lin, Z. Y. Liu, M. S. Sun, Y. Liu, X. Zhu. Learning entity and relation embeddings for knowledge graph completion. In Proceedings of the 29th AAAI Conference on Artificial Intelligence, AAAI, Austin, USA, pp. 2181–2187, 2015.
Google Scholar
T. Hasegawa, S. Sekine, R. Grishman. Discovering relations among named entities from large corpora. In Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics, ACL, Barcelona, Spain, pp. 415–422, 2004. DOI: https://doi.org/10.3115/1218955.1219008.
Google Scholar
B. Rosenfeld, R. Feldman. Clustering for unsupervised relation identification. In Proceedings of the 16th ACM Conference on Information and Knowledge Management, Association for Computing Machinery, Lisbon, Portugal, pp. 411–418, 2007. DOI: https://doi.org/10.1145/1321440.1321499.
Google Scholar
L. M. Yao, A. Haghighi, S. Riedel, A. McCallum. Structured relation discovery using generative models. In Proceedings of Conference on Empirical Methods in Natural Language Processing, ACL, Edinburgh, UK, pp. 1456–1466, 2011.
Google Scholar
L. M. Yao, S. Riedel, A. McCallum. Unsupervised Relation discovery with sense disambiguation. In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL, Jeju Island, Korea, pp. 712–720, 2012.
Google Scholar
B. N. Min, S. M. Shi, R. Grishman, C. Y. Lin. Ensemble semantics for large-scale unsupervised relation extraction. In Proceedings of Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, ACL, Jeju Island, Korea, pp. 1027–1037, 2012.
Google Scholar
D. Marcheggiani, I. Titov. Discrete-state variational autoencoders for joint discovery and factorization of relations. Transactions of the Association for Computational Linguistics, vol. 4, pp. 231–244, 2016. DOI: https://doi.org/10.1162/tacl_a_00095.
Google Scholar
T. T. Tran, P. Le, S. Ananiadou. Revisiting unsupervised relation extraction. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL, pp. 7498–7505, 2020. DOI: https://doi.org/10.18653/v1/2020.acl-main.669.
L. B. Soares, N. FitzGerald, J. Ling, T. Kwiatkowski. Matching the blanks: Distributional similarity for relation learning. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, ACL, Florence, Italy, pp. 2895–2905, 2019. DOI: https://doi.org/10.18653/v1/P19-1279.
Google Scholar
X. Han, T. Y. Gao, Y. K. Lin, H. Peng, Y. L. Yang, C. J. Xiao, Z. Y. Liu, P. Li, J. Zhou, M. S. Sun. More data, more relations, more context and more openness: A review and outlook for relation extraction. In Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing, ACL, Suzhou, China, pp. 745–758, 2020.
Google Scholar
A. Yates, M. Banko, M. Broadhead, M. Cafarella, O. Etzioni, S. Soderland. TextRunner: Open information extraction on the web. In Proceedings of Human Language Technologies: The Annual Conference of the North American Chapter of the Association for Computational Linguistics, ACL, Rochester, USA, pp. 25–26, 2007.
Google Scholar
A. Fader, S. Soderland, O. Etzioni. Identifying relations for open information extraction. In Proceedings of Conference on Empirical Methods in Natural Language Processing, ACL, Edinburgh, UK, pp. 1535–1545, 2011.
Google Scholar
L. Del Corro, R. Gemulla. ClausIE: Clause-based open information extraction. In Proceedings of the 22nd International Conference on World Wide Web, Association for Computing Machinery, Rio de Janeiro, Brazil, pp. 355–366, 2013. DOI: https://doi.org/10.1145/2488388.2488420.
Google Scholar
G. Stanovsky, J. Michael, L. Zettlemoyer, I. Dagan. Supervised open information extraction. In Proceedings of Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), ACL, New Orleans, USA, pp. 885–895, 2018. DOI: https://doi.org/10.18653/v1/N18-1081.
Google Scholar
Y. Ro, Y. Lee, P. Kang. Multi.2OIE: Multilingual open information extraction based on multi-head attention with BERT. In Proceedings of Findings of the Association for Computational Linguistics: EMNLP 2020, Association for Computational Linguistics, pp. 1107–1117, 2020. DOI: https://doi.org/10.18653/v1/2020.findings-emnlp.99.
C. G. Wang, X. Liu, Z. Chen, H. Y. Hong, J. Tang, D. Song. Zero-shot information extraction as a unified text-to-triple translation. In Proceedings of 2021 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, Online and Punta Cana, Dominican Republic, pp. 1225–1238, 2021. DOI: https://doi.org/10.18653/v1/2021.emnlp-main.94.
Google Scholar
R. D. Wu, Y. Yao, X. Han, R. B. Xie, Z. Y. Liu, F. Lin, L. Y. Lin, M. S. Sun. Open relation extraction: Relational knowledge transfer from supervised data to unsupervised data. In Proceedings of Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, ACL, Hong Kong, China, pp. 219–228, 2019. DOI: https://doi.org/10.18653/v1/D19-1021.
Google Scholar
Y. L. Shen, X. Y. Ma, Z. Q. Tan, S. Zhang, W. Wang, W. M. Lu. Locate and label: A two-stage identifier for nested named entity recognition. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), ACL, pp. 2782–2794, 2021. DOI: https://doi.org/10.18653/v1/2021.acllong.216.
T. Mikolov, I. Sutskever, K. Chen, G. Corrado, J. Dean. Distriauted representaions of words and phrases and their compositionality. In Proceedings of the 26th International Conference on Neural Information Processing Systems Lake Tahoe, USA, pp. 3111–3119, 2013.
J. Pennington, R. Socher, C. D. Manning. GloVe: Global vectors for word representation. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, ACL, Doha, USA, pp. 1532–1543, 2014. DOI: https://doi.org/10.3115/v1/D14-1162.
Google Scholar
A. Radford, K. Narasimhan, T. Salimans, I. Sutskever. Improving Language Understanding by Generative Pre-Training, [Online], Available: https://cdn.opknai.com/research-covers/language-unsupervised/language_understanding_paper.pdf, 2021.
R. Colin, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Q. Zhou, W. Li. Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of Machine Learning Research, vol. 21, no. 140, pp. 1–67, 2020.
MathSciNet
MATH
Google Scholar
W. Cui, X. Chen. Open rule induction. In Proceedings of the 35th Conference on Neural Information Processing Systems, 2021.
J. W. Han, M. Kamber, J. Pei. Data Mining: Concepts and Techniques, 3rd ed., Berlin, Germany: Morgan Kaufmann Publishers, 2011.
MATH
Google Scholar
J. Leskovec, A. Rajaraman, J. D. Ullman. Mining of Massive Datasets, [Online], Available: http://infolab.stanford.edu/~ullman/mmds/book.pdf, 2021.
J. W. Han, Y. Z. Sun, X. F. Yan, P. S. Yu. Mining knowledge from data: An information network analysis approach. In Proceedings of the IEEE 28th International Conference on Data Engineering, IEEE, Arlington, USA, pp. 1214–1217, 2012. DOI: https://doi.org/10.1109/ICDE.2012.145.
Google Scholar
P. N. Tan, M. Steinbach, A. Karpatne, V. Kumar. Introduction to Data Mining, 2nd ed., USA: Pearson, 2018.
Google Scholar
R. Agrawal, R. Srikant. Fast algorithms for mining association rules in large databases. In Proceedings of the 20th International Conference on Very Large Data Bases, Santiago, Chile, pp. 487–499, 1994.
J. W. Han, J. Pei, Y. W. Yin. Mining frequent patterns without candidate generation. ACM SIGMOD Record, vol. 29, no. 2, pp. 1–12, 2000. DOI: https://doi.org/10.1145/335191.335372.
Google Scholar
M. J. Zaki. Scalable algorithms for association mining. IEEE Transactions on Knowledge and Data Engineering, vol. 12, no. 3, pp. 372–390, 2000. DOI: https://doi.org/10.1109/69.846291.
Google Scholar
M. C. Liu, J. F. Qu. Mining high utility itemsets without candidate generation. In Proceedings of the 21st ACM International Conference on Information and Knowledge Management, Association for Computing Machinery, Maui, USA, pp. 55–64, 2012. DOI: https://doi.org/10.1145/2396761.2396773.
Google Scholar
Z. H. Deng, S. L. Lv. PrePost+: An efficient N-lists-based algorithm for mining frequent itemsets via Children-parent equivalence pruning. Expert Systems with Applications, vol. 42, no. 13, pp. 5424–5432, 2015. DOI: https://doi.org/10.1016/j.eswa.2015.03.004.
Google Scholar
J. F. Qu, B. Hang, Z. Wu, Z. B. Wu, Q. Gu, B. Tang. Efficient mining of frequent itemsets using only one dynamic prefix tree. IEEE Access, vol. 8, pp. 183722–183735, 2020. DOI: https://doi.org/10.1109/ACCESS.2020.3029302.
Google Scholar
R. Srikant, R. Agrawal. Mining generalized association rules. In Proceedings of the 21th International Conference on Very Large Data Bases, Zurich, Switzerland, pp. 407–419, 1995.
J. W. Han, Y. J. Fu. Discovery of multiple-level association rules from large databases. In Proceedings of the 21th International Conference on Very Large Data Bases, Zurich, Swizerland, pp. 420–431, 1995.
J. W. Han, J. Pei, Y. W. Yin, R. Y. Mao. Mining frequent patterns without candidate generation: A frequent-pattern tree approach. Data Mining and Knowledge Discovery, vol. 8, no. 1, pp. 53–87, 2004. DOI: https://doi.org/10.1023/B:DAMI.0000005258.31418.83.
MathSciNet
Google Scholar
R. Agrawal, R. Srikant. Mining sequential patterns. In Proceedings of the 11th International Conference on Data Engineering, IEEE, Taipei, China, pp. 3–14, 1995. DOI: https://doi.org/10.1109/ICDE.1995.380415.
Google Scholar
R. Srikant, R. Agrawal. Mining quantitative association rules in large relational tables. In Proceedings of ACM SIGMOD International Conference on Management of Data, ACM, Montreal, Canada, pp. 1–22, 1996. DOI: https://doi.org/10.1145/233269.233311.
Google Scholar
R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, A. I. Verkamo. Fast discovery of association rules. Advances in Knowledge Discovery and Data Mining, U. M. Fayyad, G. Piatetsky-Shapiro, Ed., Menlo Park, USA: American Association for Artificial Intelligence, pp. 307–328, 1996.
Google Scholar
T. Fukuda, Y. Morimoto, S. Morishita, T. Tokuyama. Data mining using two-dimensional optimized association rules: Scheme, algorithms, and visualization. In Proceedings of ACM SIGMOD Conference on Management of Data, Association for Computing Machinery, Montreal, Canada, pp. 13–23, 1996.
Google Scholar
B. Lent, A. Swami, J. Widom. Clustering association rules. to Proceedings of the 13th International Conference on Data Engineering, IEEE, Birmingham, UK, pp. 220–231, 1997. DOI: https://doi.org/10.1109/ICDE.1997.581756.
Google Scholar
K. Yoda, T. Fukuda, Y. Morimoto, S. Morishita, T. Tokuyama. Computing optimized rectilinear regions for association rules. In Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining, AAAI, Newport Beach, USA, pp. 96–103, 1997.
Google Scholar
M. Kamber, J. W. Han, J. Y. Chiang. Metarule-guided mining of multi-dimensional association rules using data cubes. In Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining, AAAI, Newport Beach, USA, pp. 207–210, 1997.
Google Scholar
Y. Aumann, Y. Lindell. A statistical theory for quantitative association rules. Journal of Intelligent Information Systems, vol. 20, no. 3, pp. 255–283, 2003. DOI: https://doi.org/10.1023/A:1022812808206.
Google Scholar
L. Q. Geng, H. J. Hamilton. Interestingness measures for data mining: A survey. ACM Computing Surveys, vol. 38, no. 3, Article number 9, 2006. DOI: https://doi.org/10.1145/1132960.32963.
Google Scholar
J. Blanchard, F. Guillet, R. Gras, H. Briand. Using information-theoretic measures to assess association rule interestingness. In Proceedings of the 5th IEEE International Conference on Data Mining, IEEE, Houston, USA, pp. 66–73, 2005. DOI: https://doi.org/10.1109/ICDM.2005.149.
Google Scholar
J. W. Han, H. Cheng, D. Xin, X. F. Yan. Frequent pattern mining: Current status and future directions. Data Mining and Knowledge Discovery, vol. 15, no. 1, pp. 55–86, 2007. DOI: https://doi.org/10.1007/s10618-006-0059-1.
MathSciNet
Google Scholar
P. Founder-Viger, J. C. W. Lin, B. Vo, T. T. Chi, J. Zhang, H. B. Le. A survey of itemset mining. WIREs Data Mining and Knowledge Discovery, vol. 7, no. 4, Article number e1207, 2017. DOI: https://doi.org/10.1002/widm.1207.
Google Scholar
C. C. Aggarwal, Y. Li, J. Y. Wang, J. Wang. Frequent pattern mining with uncertain data. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, Paris, France, pp. 29–38, 2009. DOI: https://doi.org/10.1145/1557019.1557030.
Google Scholar
W. S. Gan, J. C. W. Lin, P. Fournier-Viger, H. C. Chao, P. S. Yu. HUOPM: High-utility occupancy pattern mining. IEEE Transactions on Cybernetics, vol. 50, no. 3, pp. 1195–1208, 2020. DOI: https://doi.org/10.1109/TCYB.2019.2896267.
Google Scholar
C. M. Chen, L. L. Chen, W. S. Gan, L. N. Qiu, W. P. Ding. Discovering high utility-occupancy patterns from uncertain data. Information Sciences, vol. 546, pp. 1208–1229, 2021. DOI: https://doi.org/10.1016/j.ins.2020.10.001.
MathSciNet
Google Scholar
B. Vo, L. T. T. Nguyen, N. Bui, T. D. D. Nguyen, V. N. Huynh, T. P. Hong. An efficient method for mining closed potential high-utility itemsets. IEEE Access, vol. 8, pp. 31813–31822, 2020. DOI: https://doi.org/10.1109/ACCESS.2020.2974104.
Google Scholar
R. Andrews, J. Diederich, A. B. Tickle. Survey and critique of techniques for extracting rules from trained artificial neural networks. Knowledge-Based Systems, vol. 8, no. 6, 373–389, 1995. DOI: https://doi.org/10.1016/0950-7051(96)81920-4.
Google Scholar
V. I. S. Carmona. Experimental Analysis of Representation Learning Systems, Ph. D. dissertation. University College London, UK, 2018.
Google Scholar
R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, D. Pedreschi. A survey of methods for explaining black box models. ACM Computing Surveys, vol. 51, no. 5, Article number 93, 2019. DOI: https://doi.org/10.1145/3236009.
Google Scholar
S. Thrun. Extracting rules from artificial neural networks with distributed representations. In Proceedings of the 7th International Conference on Neural Information Processing Systems, Denver, USA, pp. 505–512, 1994.
M. W. Craven, J. W. Shavlik. Extracting tree-structured representations of trained networks. In Proceedings of the 8th International Conference on Neural Information Processing Systems, Denver, USA, pp. 24–30, 1995.
J. Huysmans, K. Dejaeger, C. Mues, J. Vanthienen, B. Baesens. An empirical evaluation of the comprehensibility of decision table, tree and rule based predictive models. Decision Support Systems, vol. 51, no. 1, pp. 141–154, 2011. DOI: https://doi.org/10.1016/j.dss.2010.12.003.
Google Scholar
A. A. Freitas. Comprehensible classification models: A position paper. ACM SIGKDD Explorations Newsletter, vol. 15, no. 1, pp. 1–10, 2013. DOI: https://doi.org/10.1145/2594473.2594475.
Google Scholar
H. Jacobsson. Rule extraction from recurrent neural networks: A taxonomy and review. Neural Computation, vol. 17, no. 6, pp. 1223–1263, 2005. DOI: https://doi.org/10.1162/0899766053630350.
MathSciNet
MATH
Google Scholar
L. Breiman, J. H. Friedman, R. A. Olshen, C. J. Stone. Classification and Regression Trees, New York, USA: Wadsworth Int. Group, 1984.
MATH
Google Scholar
M. T. Ribeiro, S. Singh, C. Guestrin. “Why Should I Trust You?”: Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Association for Computing Machinery, San Francisco, USA, pp. 1135–1144, 2016. DOI: https://doi.org/10.1145/2939672.2939778.
Google Scholar
P. Domingos. Knowledge discovery via multiple models. Intelligent Data Analysis, vol. 2, no. 3, pp. 187–202, 1998. DOI: https://doi.org/10.3233/IDA-1998-2303.
Google Scholar
I. Sánchez, T. Rocktaschel, S. Riedel, S. Singh. Towards extracting faithful and descriptive representations of latent variable models. In Proceedings of AAAI Spring Syposium on Knowledge Representation and Reasoning: Integrating Symbolic and Neural Approaches, AAAI, Stanford, California, USA, pp. 35–38, 2015.
Google Scholar
I. Sanchez Carmona, S. Riedel. Extracting interpretable models from matrix factorization models. In Proceedings of International Conference on Cognitive Computation: Integrating Neural and Symbolic Approaches, Montreal, Canada, pp. 78–84, 2015.
G. Peake, J. Wang. Explanation mining: Post hoc interpretability of latent factor models for recommendation systems. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, ACM, London, United Kingdom, pp. 2060–2069, 2018. DOI: https://doi.org/10.1145/3219819.3220072.
Google Scholar
A. C. Gusmão, A. H. C. Correia, G. De Bona, F. G. Cozman. interpreting embedding models of knowledge bases: A pedagogical approach. In Proceedings of ICML Workshop on Human Interpretability in Machine Learning, Stockholm, Sweden, pp. 79–86, 2018.
S. B. Thrun. Extracting Provably Correct Rules from Artificial Neural Networks, Bonn, University of Bonn, Germany, 1993.
Google Scholar
J. R. Zilke, E. L. Mencía, F. Janssen. DeepRED — rule extraction from deep neural networks. In Proceedings of the 19th International Conference on Discovery Science, Springer, Bari, Italy, pp. 457–473, 2016. DOI: https://doi.org/10.1007/978-3-319-46307-0_29.
Google Scholar
M. Sato, H. Tsukimoto. Rule extraction from neural networks via decision tree induction. In Proceedings of International Joint Conference on Neural Networks, IEEE, Washington, USA, pp. 1870–1875, 2001. DOI: https://doi.org/10.1109/IJCNN.2001.938448.
Google Scholar
R. Setiono, H. Liu. Understanding neural networks via rule extraction. In Proceedings of the 14th International Joint Conference on Artificial Intelligence, Montreal, Canada, pp. 480–485, 1995.
B. S. Yang, W. T. Yih, X. D. He, J. F. Gao, L. Deng. Embedding entities and relations for learning and inference in knowledge bases. In Proceedings of the 3rd International Conference on Learning Representations, San Diego, USA, 2015.
W. J. Murdoch, A. Szlam. Automatic rule extraction from long short term memory networks. In Proceedings of the 5th International Conference on Learning Representations, Toulon, France, 2017.
S. M. Lundberg, S. I. Lee. A unified approach to interpreting model predictions. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, USA, pp. 4768–4777, 2017.
S. Bang, P. T. Xie, H. Lee, W. Wu, E. Xing. Explaining a black-box by using a deep variational information bottle-neck approach. In Proceedings of the 35th AAAI Conference on Artificial Intelligence, AAAI, pp. 11396–11404, 2021.
Google Scholar
M. Pourvali, Y. C. Jin, C. Sheng, Y. Meng, L. Wang, M. S. Gorkovenko, C. J. Hu. Path-based visual explanation. In Proceedings of the 9th CCF International Conference on Natural Language Processing and Chinese Computing, Springer, Zhengzhou, China, pp. 454–466, 2020. DOI: https://doi.org/10.1007/978-3-030-60457-8_37.
Google Scholar
A. Jacovi, Y. Goldberg. Towards faithfully interpretable NLP systems: How should we define and evaluate faithfulness? In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL, pp. 4198–4205, 2020. DOI: https://doi.org/10.18653/v1/2020.acl-main.386.
J. Sippy, G. Bansal, D. S. Weld. Data staining: A method for comparing faithfulness of explainers. In Proceedings of ICML Workshop on Human Interpretability in Machine Learning, 2020.
J. Bastings, S. Ebert, P. Zablotskaia, A. Sandholm, K. Filippova. “Will you find these shortcuts?” A protocol for evaluating the faithfulness of input salience methods for text classification, [Online], Available: https://arxiv.org/pdf/2111.07367.pdf, 2021.
J. Yuan, O. Nov, E. Bertini. An exploration and validation of visual factors in understanding classification rule sets. In Proceedings of IEEE Visualization Conference, IEEE, New Orleans, USA, pp. 6–10, 2021. DOI: https://doi.org/10.1109/VIS49827.2021.9623303.
Google Scholar
I. Lage, E. Chen, J. He, M. Narayanan, B. Kim, S. J. Gershman, F. Doshi-Velez. Human evaluation of models built for interpretability. In Proceedings of the 7th AAAI Conference on Human Computation and Crowdsourcing, AAAI Press, Stevenson, USA, pp. 59–67, 2019.
Google Scholar
A. McCallum, D. Jensen. A Note on the Unification of Information Extraction and Data Mining using Conditional-Probability, Relational Models, [Online], Available: https://scholarworks.umass.edu/cs_faculty_pubs/42/, 2021.
R. J. Mooney, R. Bunescu. Mining knowledge from text using information extraction. ACM SIGKDD Explorations Newsletter, vol. 7, no. 1, pp. 3–10, 2005. DOI: https://doi.org/10.1145/1089815.1089817.
Google Scholar
Q. Z. Xie, X. Z. Ma, Z. H. Dai, E. Hovy. An interpretable knowledge transfer model for knowledge base completion. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL, Vancouver, Canada, pp. 950–962, 2017. DOI: https://doi.org/10.18653/v1/P17-1088.
Google Scholar
L. A. Galárraga, C. Teflioudi, K. Hose, F. Suchanek. AMIE: Association rule mining under incomplete evidence in ontological knowledge bases. In Proceedings of the 22nd International Conference on World Wide Web, Association for Computing Machinery, Rio de Janeiro, Brazil, pp. 413–422, 2013. DOI: https://doi.org/10.1145/2488388.2488425.
Google Scholar
S. Riedel, S. Singh, G. Bouchard, T. Rocktäschel, I. Sanchez. Towards two-way interaction with reading machines. In Proceedings of the 3rd International Conference on Statistical Language and Speech Processing, Springer, Budapest, Hungary, pp. 1–7, 2015. DOI: https://doi.org/10.1007/978-3-319-25789-1_1.
Google Scholar
K. A. Kaufman, R. S. Michalski. From data mining to knowledge mining. Data Mining and Data Visualization, C. R. Rao, E. J. Wegman, J. L. Solka, Eds., Amsterdam, Netherlands: Elsevier, pp. 47–75, 2005. DOI: https://doi.org/10.1016/S0169-7161(04)24002-0.
Google Scholar