Skip to main content

Advertisement

SpringerLink
  1. Home
  2. International Journal of Automation and Computing
  3. Article
Electronic Nose and Its Applications: A Survey
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Advances in Electronic Nose Development for Application to Agricultural Products

04 July 2019

Wenshen Jia, Gang Liang, … Jihua Wang

Electronic Noses as a Powerful Tool for Assessing Meat Quality: a Mini Review

05 May 2018

Wenshen Jia, Gang Liang, … Jihua Wang

Application of electronic nose as a non-invasive technique for odor fingerprinting and detection of bacterial foodborne pathogens: a review

05 November 2019

Ernest Bonah, Xingyi Huang, … Richard Osae

Evaluation and analysis of ear recognition models: performance, complexity and resource requirements

16 May 2018

Žiga Emeršič, Blaž Meden, … Vitomir Štruc

Neural Network Technique for Electronic Nose Based on High Sensitivity Sensors Array

22 April 2019

S. Khaldi & Z. Dibi

Artificial olfactory sensor technology that mimics the olfactory mechanism: a comprehensive review

19 August 2022

Chuntae Kim, Kyung Kwan Lee, … Dong-Wook Han

Sniffing Bacteria with a Carbon-Dot Artificial Nose

20 April 2021

Nitzan Shauloff, Ahiud Morag, … Raz Jelinek

Electronic nose and wireless sensor network for environmental monitoring application in pulp and paper industry: a review

07 October 2022

Poonam Prasad, Piyush Raut, … G. L. Bodhe

Application of Artificial Intelligence in Food Industry—a Guideline

09 August 2021

Nidhi Rajesh Mavani, Jarinah Mohd Ali, … Norliza Abd Rahman

Download PDF
  • Review
  • Open Access
  • Published: 28 December 2019

Electronic Nose and Its Applications: A Survey

  • Diclehan Karakaya  ORCID: orcid.org/0000-0002-7059-302X1,
  • Oguzhan Ulucan  ORCID: orcid.org/0000-0003-2077-96911 &
  • Mehmet Turkan  ORCID: orcid.org/0000-0002-9780-92491 

International Journal of Automation and Computing volume 17, pages 179–209 (2020)Cite this article

  • 7405 Accesses

  • 133 Citations

  • 5 Altmetric

  • Metrics details

Abstract

In the last two decades, improvements in materials, sensors and machine learning technologies have led to a rapid extension of electronic nose (EN) related research topics with diverse applications. The food and beverage industry, agriculture and forestry, medicine and health-care, indoor and outdoor monitoring, military and civilian security systems are the leading fields which take great advantage from the rapidity, stability, portability and compactness of ENs. Although the EN technology provides numerous benefits, further enhancements in both hardware and software components are necessary for utilizing ENs in practice. This paper provides an extensive survey of the EN technology and its wide range of application fields, through a comprehensive analysis of algorithms proposed in the literature, while exploiting related domains with possible future suggestions for this research topic.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. T. M. Dymerski, T. M. Chmiel, W. Wardencki. Invited review article: An odor-sensing system-powerful technique for foodstuff studies. Review of Scientific Instruments, vol. 82, no. 11, Article number 111101, 2011. DOI: https://doi.org/10.1063/1.3660805.

    Google Scholar 

  2. K. Mori. The Olfactory System: From Odor Molecules to Motivational Behaviors, Tokyo, Japan: Springer, 2014. DOI: https://doi.org/10.1007/978-4-431-54376-3.

    Google Scholar 

  3. B. Szulczynski, K. Arminski, J. Namiesnik, J. Gebicki. Determination of odour interactions in gaseous mixtures using electronic nose methods with artificial neural networks. Sensors, vol. 18, no. 2, Article number 519, 2018. DOI: https://doi.org/10.3390/s18020519.

    Google Scholar 

  4. H. Zwaardemaker, F. Hogewind. On spray-electricity and waterfall electricity. In Proceedings of the Royal Netherlands Academy of Arts and Sciences, KNAW, Amsterdam, The Netherlands, pp. 429–437, 1920.

    Google Scholar 

  5. B. Berglund, U. Berglund, T. Lindvall, L. T. Svensson. A quantitative principle of perceived intensity summation in odor mixtures. Journal of Experimental Psychology, vol. 100, no. 1, pp. 29–38, 1973. DOI: https://doi.org/10.1037/h0035435.

    Google Scholar 

  6. P. Laffort, A. Dravnieks. Several models of suprathreshold quantitative olfactory interaction in humans applied to binary, ternary and quaternary mixtures. Chemical Senses, vol. 7, no. 2, pp. 153–174, 1982. DOI: https://doi.org/10.1093/chemse/7.2.153.

    Google Scholar 

  7. P. Laffort. Models for describing intensity interactions in odor mixtures: A reappraisal. Perception of Complex Smells and Tastes, D. G. Laing, W. S. Cam, R. L. McBride, B. W. Ache, Eds., New York, USA: Academic Press, pp. 20–223, 1989.

    Google Scholar 

  8. P. Laffort. The application of synergy and inhibition phenomena to odor reduction. Studies in Environmental Science, vol. 61, pp. 105–117, 1994. DOI: https://doi.org/10.1016/S0166-1116(08)72047-8.

    Google Scholar 

  9. B. Szulczynski, J. Namiesnik, J. Gebicki. Determination of odour interactions of three-component gas mixtures using an electronic nose. Sensors, vol. 17, no. 10, Article number 2380, 2017. DOI: https://doi.org/10.3390/s17102380.

    Google Scholar 

  10. L. C. Yan, J. M. Liu, S. Jiang, C. D. Wu, K. W. Gao. The regular interaction pattern among odorants of the same type and its application in odor intensity assessment. Sensors, vol. 17, no. 7, Article number 1624, 2017. DOI: https://doi.org/10.3390/s17071624.

    Google Scholar 

  11. G. Hudon, C. Guy, J. Hermia. Measurement of odor intensity by an electronic nose. Journal of the Air & Waste Management Association, vol. 50, no. 10, pp. 1750–1758, 2000. DOI: https://doi.org/10.1080/10473289.2000.10464202.

    Google Scholar 

  12. K. Persaud, G. Dodd. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature, vol. 299, no. 5881, pp. 352–355, 1982. DOI: https://doi.org/10.1038/299352a0.

    Google Scholar 

  13. A. Ikegami, M. Kaneyasu. Olfactory detection using integrated sensors. In Proceedings of the 3rd International Conference on Solid-State Sensors and Actuators and Microsystems, IEEE, Philadelphia, USA, pp. 136–139, 1985.

    Google Scholar 

  14. M. A. Craven, J. W. Gardner, P. N. Bartlett. Electronic noses-development and future prospects. TrAC Trends in Analytical Chemistry, vol. 15, no. 9, pp. 486–493, 1996. DOI: https://doi.org/10.1016/S0165-9936(96)00061-1.

    Google Scholar 

  15. T. Pobkrut, T. Eamsa-ard, T. Kerdcharoen. Sensor drone for aerial odor mapping for agriculture and security services. In Proceedings of the 13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, IEEE, Chiang Mai, Thailand, 2016. DOI: https://doi.org/10.1109/ECTICon.2016.7561340.

    Google Scholar 

  16. A. Rocha, M. Serrhini, C. Felgueiras. Europe and MENA Cooperation Advances in Information and Communication Technologies, Cham, Germany: Springer, 2017.

    Google Scholar 

  17. M. J. Friedrich. Scientists seek to sniff out diseases. JAMA, vol. 301, no. 6, pp. 585–586, 2009. DOI: https://doi.org/10.1001/jama.2009.90.

    Google Scholar 

  18. A. D. Wilson, M. Baietto. Applications and advances in electronic-nose technologies. Sensors, vol. 9, no. 7, pp. 5099–5148, 2009. DOI: https://doi.org/10.3390/s90705099.

    Google Scholar 

  19. K. Arshak, E. Moore, G. M. Lyons, J. Harris, S. Clifford. A review of gas sensors employed in electronic nose applications. Sensor Review, vol. 24, no. 2, pp. 181–198, 2004. DOI: https://doi.org/10.1108/02602280410525977.

    Google Scholar 

  20. A. Loutfi, S. Coradeschi, G. K. Mani, P. Shankar, J. B. B. Rayappan. Electronic noses for food quality: A review. Journal of Food Engineering, vol. 144, pp. 103–111, 2015. DOI: https://doi.org/10.1016/j.jfoodeng.2014.07.019.

    Google Scholar 

  21. B. Thakral, S. Gupta. Artificial neural networks for e-NOSE: A review. International Journal of Applied Engineering Research, vol. 7, no. 11, pp. 1601–1604, 2012.

    Google Scholar 

  22. R. Pallas-Areny, J. G. Webster. Sensors and Signal Conditioning, 2nd ed., New York, USA: Wiley, 2000.

    Google Scholar 

  23. C. Sarafoleanu, C. Mella, M. Georgescu, C. Perederco. The importance of the olfactory sense in the human behavior and evolution. Journal of Medicine and Life, vol. 2, no. 2, pp. 196–198, 2009.

    Google Scholar 

  24. B. Szulczynski, J. Gebicki. Currently commercially available chemical sensors employed for detection of volatile organic compounds in outdoor and indoor air. Environments, vol. 4, no. 1, Article number 21, 2017. DOI: https://doi.org/10.3390/environments4010021.

    Google Scholar 

  25. P. Boeker. On ‘electronic nose’ methodology. Sensors and Actuators B: Chemical, vol. 204, pp. 2–17, 2014. DOI: https://doi.org/10.1016/j.snb.2014.07.087.

    Google Scholar 

  26. J. Gebicki. Application of electrochemical sensors and sensor matrixes for measurement of odorous chemical compounds. TrAC Trends in Analytical Chemistry, vol. 77, pp. 1–13, 2016. DOI: https://doi.org/10.1016/j.trac.2015.10.005.

    Google Scholar 

  27. C. X. Wang, L. W. Yin, L. Y. Zhang, D. Xiang, R. Gao. Metal oxide gas sensors: Sensitivity and influencing factors. Sensors, vol. 10, no. 3, pp. 2088–2106, 2010. DOI: https://doi.org/10.3390/s100302088.

    Google Scholar 

  28. A. Berna. Metal oxide sensors for electronic noses and their application to food analysis. Sensors, vol. 10, no. 4, pp. 3882–3910, 2010. DOI: https://doi.org/10.3390/s100403882.

    Google Scholar 

  29. N. Yamazoe, Y. Kurokawa, T. Seiyama. Effects of additives on semiconductor gas sensors. Sensors and Actuators, vol. 4, pp. 283–289, 1983. DOI: https://doi.org/10.1016/0250-6874(83)85034-3.

    Google Scholar 

  30. H. J. Kim, J. H. Lee. Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview. Sensors and Actuators B: Chemical, vol. 192, pp. 607–627, 2014. DOI: https://doi.org/10.1016/j.snb.2013.11.005.

    Google Scholar 

  31. H. Bai, G. Q. Shi. Gas sensors based on conducting polymers. Sensors, vol. 7, no. 3, pp. 267–307, 2007. DOI: https://doi.org/10.3390/s7030267.

    Google Scholar 

  32. X. H. Huang, Q. S. Bai, J. G. Hu, D. Hou. A practical model of quartz crystal microbalance in actual applications. Sensors, vol. 17, no. 8, Article number 1785, 2017. DOI: https://doi.org/10.3390/s17081785.

  33. N. W. Turner, M. Bloxham, S. A. Piletsky, M. J. Whitcombe, I. Chianella. The use of a quartz crystal microbalance as an analytical tool to monitor particle/surface and particle/particle interactions under dry ambient and pressurized conditions: A study using common inhaler components. Analyst, vol. 142, no. 1, pp. 229–236, 2017. DOI: https://doi.org/10.1039/C6AN01572G.

    Google Scholar 

  34. J. W. Thies, P. Kuhn, B. Thurmann, S. Dubel, A. Dietzel. Microfluidic quartz-crystal-microbalance (QCM) sensors with specialized immunoassays for extended measurement range and improved reusability. Microelectronic Engineering, vol. 179, pp. 25–30, 2017. DOI: https://doi.org/10.1016/j.mee.2017.04.023.

    Google Scholar 

  35. Y. Yan, D. D. Lu, H. Hao, H. P. Hou, T. Zhang, L. M. Wu, L. K. Cai. Polyaniline-modified quartz crystal microbalance sensor for detection of formic acid gas. Water, Air, & Soil Pollution, vol. 223, no. 3, pp. 1275–1280, 2012. DOI: https://doi.org/10.1007/s11270-011-0943-1.

    Google Scholar 

  36. A. Alassi, M. Benammar, D. Brett. Quartz crystal microbalance electronic interfacing systems: A review. Sensors, vol. 17, no. 12, Article number 2799, 2017. DOI: https://doi.org/10.3390/s17122799.

    Google Scholar 

  37. S. K. Jha, K. Hayashi. A quick responding quartz crystal microbalance sensor array based on molecular imprinted polyacrylic acids coating for selective identification of aldehydes in body odor. Talanta, vol. 134, pp. 105–119, 2015. DOI: https://doi.org/10.1016/j.talanta.2014.09.049.

    Google Scholar 

  38. T. Wasilewski, B. Szulczynski, M. Wojciechowski, W. Kamysz, J. Gebicki. A highly selective biosensor based on peptide directly derived from the HarmOBP7 aldehyde binding site. Sensors, vol. 19, no. 19, Article number 4284, 2019. DOI: https://doi.org/10.3390/s19194284.

    Google Scholar 

  39. S. Sankaran, S. Panigrahi, S. Mallik. Olfactory receptor based piezoelectric biosensors for detection of alcohols related to food safety applications. Sensors and Actuators B: Chemical, vol. 155, no. 1, pp. 8–18, 2011. DOI: https://doi.org/10.1016/j.snb.2010.08.003.

    Google Scholar 

  40. Y. S. Zhang, K. Yu, R. L. Xu, D. S. Jiang, L. Q. Luo, Z. Q. Zhu. Quartz crystal microbalance coated with carbon nanotube films used as humidity sensor. Sensors and Actuators A: Physical, vol. 120, no. 1, pp. 142–146, 2005. DOI: https://doi.org/10.1016/j.sna.2004.11.032.

    Google Scholar 

  41. P. J. Qi, C. Zhao, R. Wang, T. Fei, T. Zhang. High-performance QCM humidity sensors using acidized-multiwalled carbon nanotubes as sensing film. IEEE Sensors Journal, vol. 18, no. 13, pp. 5278–5283, 2018. DOI: https://doi.org/10.1109/JSEN.2018.2839110.

    Google Scholar 

  42. I. A. Koshets, Z. I. Kazantseva, Y. M. Shirshov, S. A. Cherenok, V. I. Kalchenko. Calixarene films as sensitive coatings for QCM-based gas sensors. Sensors and Actuators B: Chemical, vol. 106, no. 1, pp. 177–181, 2005. DOI: https://doi.org/10.1016/j.snb.2004.05.054.

    Google Scholar 

  43. T. Wasilewski, B. Szulczynski, W. Kamysz, J. Gebicki, J. Namiesnik. Evaluation of three peptide immobilization techniques on a QCM surface related to acetaldehyde responses in the gas phase. Sensors, vol. 18, no. 11, Article number 3942, 2018. DOI: https://doi.org/10.3390/s18113942.

    Google Scholar 

  44. G. Sauerbrey. Verwendung von Schwingquarzen zur wagung dunner schichten und zur mikrowagung. Zeitschrift fur Physik, vol. 155, no. 2, pp. 206–222, 1959. (in German) DOI: https://doi.org/10.1007/BF01337937.

    Google Scholar 

  45. J. D. N. Cheeke, Z. Wang. Acoustic wave gas sensors. Acoustic wave gas sensors. Sensors and Actuators B: Chemical, vol. 59, no. 2–3, pp. 146–153, 1999. DOI: https://doi.org/10.1016/S0925-4005(99)00212-9.

    Google Scholar 

  46. J. W. Gardner, P. N. Bartlett. Electronic Noses: Principles and Applications, Oxford, UK: Oxford University Press, 1999.

    Google Scholar 

  47. X. Liu, S. T. Cheng, H. Liu, S. Hu, D. Q. Zhang, H. S. Ning. A survey on gas sensing technology. Sensors, vol. 12, no. 7, pp. 9635–9665, 2012. DOI: https://doi.org/10.3390/s120709635.

    Google Scholar 

  48. S. Esfahani, J. A. Covington. Low cost optical electronic nose for biomedical applications. Proceedings, vol. 1, no. 4, Article number 589, 2017. DOI: https://doi.org/10.3390/proceedings1040589.

    Google Scholar 

  49. L. Spinelle, M. Gerboles, G. Kok, S. Persijn, T. Sauerwald. Review of portable and low-cost sensors for the ambient air monitoring of benzene and other volatile organic compounds. Sensors, vol. 17, no. 7, Article number 1520, 2017. DOI: https://doi.org/10.3390/s17071520.

    Google Scholar 

  50. B. Szulczynski, T. Wasilewski, W. Wojnowski, T. Majchrzak, T. Dymerski, J. Namiesnik, J. Gebicki. Different ways to apply a measurement instrument of e-nose type to evaluate ambient air quality with respect to odour nuisance in a vicinity of municipal processing plants. Sensors, vol. 17, no. 11, Article number 2671, 2017. DOI: https://doi.org/10.3390/s17112671.

    Google Scholar 

  51. I. El Naqa, M. J. Murphy. What is machine learning? Machine Learning in Radiation Oncology: Theory and Applications, I. El Naqa, R. J. Li, M. J. Murphy, Eds., Cham, Germany: Springer, pp. 3–11, 2015. DOI: https://doi.org/10.1007/978-3-319-18305-3_1.

    Google Scholar 

  52. G. Wiederhold, J. McCarthy. Arthur Samuel: Pioneer in machine learning. IBM Journal of Research and Development, vol. 36, no. 3, pp. 329–331, 1992. DOI: https://doi.org/10.1147/rd.363.0329.

    Google Scholar 

  53. E. Alpaydin. Introduction to Machine Learning, Cambridge, UK: MIT Press, 2014.

    MATH  Google Scholar 

  54. O. Chapelle, B. Scholkopf, A. Zien. Semi-supervised Learning, Cambridge, UK: MIT Press, 2010.

    Google Scholar 

  55. A. D. Wilson. Review of electronic-nose technologies and algorithms to detect hazardous chemicals in the environment. Procedia Technology, vol. 1, pp. 453–463, 2012. DOI: https://doi.org/10.1016/j.protcy.2012.02.101.

    Google Scholar 

  56. C. M. Bishop. Neural Networks for Pattern Recognition, New York, USA: Oxford University Press, 1995.

    MATH  Google Scholar 

  57. C. M. Bishop. Pattern Recognition and Machine Learning, New York, USA: Springer, 2013.

    MATH  Google Scholar 

  58. S. Al Maskari, X. Li. E-nose pattern recognition and drift compensation methods. Electronic Nose Technologies and Advances in Machine Olfaction, Y. A. Albastaki, F. Albalooshi, Eds., Hershey, USA: Engineering Science Reference, pp. 38–57, 2018. DOI: https://doi.org/10.4018/978-1-5225-3862-2.ch003.

    Google Scholar 

  59. G. J. McLachlan. Discriminant Analysis and Statistical Pattern Recognition, New York: USA, Wiley, 2005.

    MATH  Google Scholar 

  60. R. O. Duda, P. E. Hart, D. G. Stork. Pattern Classification, 2nd ed., New York: USA: John Wiley and Sons, 2000.

    MATH  Google Scholar 

  61. X. J. Tian, J. Wang, S. Q. Cui. Analysis of pork adulteration in minced mutton using electronic nose of metal oxide sensors. Journal of Food Engineering, vol. 119, no. 4, pp. 744–749, 2013. DOI: https://doi.org/10.1016/j.jfoodeng.2013.07.004.

    Google Scholar 

  62. V. E. Vinzi, W. W. Chin, J. Henseler, H. W. Wang. Handbook of Partial Least Squares: Concepts, Methods and Applications, New York, USA: Springer, 2010.

    MATH  Google Scholar 

  63. T. Aguilera, J. Lozano, J. A. Paredes, F. J. Alvarez, J. I. Suarez. Electronic nose based on independent component analysis combined with partial least squares and artificial neural networks for wine prediction. Sensors, vol. 12, no. 6, pp. 8055–8072, 2012. DOI: https://doi.org/10.3390/s120608055.

    Google Scholar 

  64. T. Amemiya. Advanced Econometrics. Harvard University Press, Cambridge, USA, 1985.

    Google Scholar 

  65. P. Giungato, E. Laiola, V. Nicolardi. Evaluation of industrial roasting degree of coffee beans by using an electronic nose and a stepwise backward selection of predictors. Food Analytical Methods, vol. 10, no. 10, pp. 3424–3433, 2017. DOI: https://doi.org/10.1007/s12161-017-0909-z.

    Google Scholar 

  66. C. Baskar, N. Nesakumar, J. B. B. Rayappan, M. Doraipandian. A framework for analysing E-nose data based on fuzzy set multiple linear regression: Paddy quality assessment. Sensors and Actuators A: Physical, vol. 267, pp. 200–209, 2017. DOI: https://doi.org/10.1016/j.sna.2017.10.020.

    Google Scholar 

  67. I. Jolliffe. Principal component analysis. International Encyclopedia of Statistical Science, M. Lovric, Ed., Berlin, Germany: Springer, 2011. DOI: https://doi.org/10.1007/978-3-642-04898-2_455.

    Google Scholar 

  68. L. P. Wang. Support Vector Machines: Theory and Applications, Berlin, Germany: Springer, 2005.

    MATH  Google Scholar 

  69. R. Laref, E. Losson, A. Sava, K. Adjallah, M. Siadat. A comparison between SVM and PLS for E-nose based gas concentration monitoring. In Proceedings of IEEE International Conference on Industrial Technology, IEEE, Lyon, France, pp. 1335–1339, 2018. DOI: https://doi.org/10.1109/ICIT.2018.8352372.

    Google Scholar 

  70. J. M. Zurada. Introduction to Artificial Neural Systems. St. Paul, USA: West Publishing House, 1992.

    Google Scholar 

  71. Y. Thazin, T. Pobkrut, T. Kerdcharoen. Prediction of acidity levels of fresh roasted coffees using e-nose and artificial neural network. In Proceedings of the 10th International Conference on Knowledge and Smart Technology, IEEE, Chiang Mai, Thailand, pp. 210–215, 2018. DOI: https://doi.org/10.1109/KST.2018.8426206.

    Google Scholar 

  72. L. Zhang, F. C. Tian. Performance study of multilayer perceptrons in a low-cost electronic nose. IEEE Transactions on Instrumentation and Measurement, vol. 63, no. 7, pp. 1670–1679, 2014. DOI: https://doi.org/10.1109/TIM.2014.2298691.

    Google Scholar 

  73. J. P. Santos, M. Garcia, M. Aleixandre, M. C. Horrillo, J. Gutierrez, I. Sayago, M. J. Fernandez, L. Ares. Electronic nose for the identification of pig feeding and ripening time in Iberian hams. Meat Science, vol. 66, no. 3, pp. 727–732, 2004. DOI: https://doi.org/10.1016/j.meatsci.2003.07.005.

    Google Scholar 

  74. S. Romani, C. Cevoli, A. Fabbri, L. Alessandrini, M. Dalla Rosa. Evaluation of coffee roasting degree by using electronic nose and artificial neural network for off-line quality control. Journal of Food Science, vol. 77, no. 9, pp. C960–C965, 2012. DOI: https://doi.org/10.1111/j.1750-3841.2012.02851.x.

    Google Scholar 

  75. M. E. Escuderos, S. Sanchez, A. Jimenez. Quartz crystal microbalance (QCM) sensor arrays selection for olive oil sensory evaluation. Food Chemistry, vol. 124, no. 3, pp. 857–862, 2011. DOI: https://doi.org/10.1016/j.foodchem.2010.07.007.

    Google Scholar 

  76. T. Saidi, K. Tahri, N. El Bari, R. Ionescu, B. Bouchikhi. Detection of seasonal allergic rhinitis from exhaled breath VOCs using an electronic nose based on an array of chemical sensors. In Proceedings of IEEE Sensors, IEEE, Busan, South Korea, 2015, DOI: https://doi.org/10.1109/ICSENS.2015.7370579.

    Google Scholar 

  77. P. Maho, C. Dolcinotti, T. Livache, C. Herrier, A. Andreev, P. Comon, Simon Barthelme. Olfactive robot for gas discrimination over several months using a new optoelectronic nose. In Proceedings of the 18th International Symposium on Olfaction and Electronic Nose, Fukuoka, Japan, 2019.

  78. T. Dymerski, J. Gebicki, W. Wardencki, J. Namiesnik. Quality evaluation of agricultural distillates using an electronic nose. Sensors, vol. 13, no. 12, pp. 15954–15967, 2013. DOI: https://doi.org/10.3390/s131215954.

    Google Scholar 

  79. S. Buratti, S. Benedetti, M. Scampicchio, E. C. Pangerod. Characterization and classification of Italian barbera wines by using an electronic nose and an amperometric electronic tongue. Analytica Chimica Acta, vol. 525, no. 1, pp. 133–139, 2004. DOI: https://doi.org/10.1016/j.aca.2004.07.062.

    Google Scholar 

  80. V. Y. Musatov, V. V. Sysoev, M. Sommer, I. Kiselev. Assessment of meat freshness with metal oxide sensor microarray electronic nose: A practical approach. Sensors and Actuators B: Chemical, vol. 144, no. 1, pp. 99–103, 2010. DOI: https://doi.org/10.1016/j.snb.2009.10.040.

    Google Scholar 

  81. X. Z. Hong, J. Wang. Discrimination and prediction of pork freshness by E-nose. In Proceedings of the 5th International Conference on Computer and Computing Technologies in Agriculture V, Springer, Beijing, China, pp. 1–14, 2011. DOI: https://doi.org/10.1007/978-3-642-27275-2_1.

    Google Scholar 

  82. Z. B. Wei, X. Z. Xiao, J. Wang, H. Wang. Identification of the rice wines with different marked ages by electronic nose coupled with smartphone and cloud storage platform. Sensors, vol. 17, no. 11, Article number 2500, 2017. DOI: https://doi.org/10.3390/s17112500.

    Google Scholar 

  83. D. D. Du, J. Wang, B. Wang, L. Y. Zhu, X. Z. Hong. Ripeness prediction of postharvest kiwifruit using a MOS E-nose combined with chemometrics. Sensors, vol. 19, no. 2, Article number 419, 2019. DOI: https://doi.org/10.3390/s19020419.

    Google Scholar 

  84. T. Dymerski, J. Gebicki, W. Wardencki, J. Namiesnik. Application of an electronic nose instrument to fast classification of polish honey types. Sensors, vol. 14, no. 6, pp. 10709–10724, 2014. DOI: https://doi.org/10.3390/s140610709.

    Google Scholar 

  85. C. J. C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, vol. 2, no. 2, pp. 121–167, 1998. DOI: https://doi.org/10.1023/A:1009715923555.

    Google Scholar 

  86. M. Goudjil, M. Koudil, M. Bedda, N. Ghoggali. A novel active learning method using SVM for text classification. International Journal of Automation and Computing, vol. 15, no. 3, pp. 290–298, 2018. DOI: https://doi.org/10.1007/s11633-015-0912-z.

    Google Scholar 

  87. P. Saha, S. Ghorai, B. Tudu, R. Bandyopadhyay, N. Bhattacharyya. Multi-class support vector machine for quality estimation of black tea using electronic nose. In Proceedings of the 6th International Conference on Sensing Technology, IEEE, Kolkata, India, pp. 571–576, 2012. DOI: https://doi.org/10.1109/ICSensT.2012.6461744.

    Google Scholar 

  88. Z. Y. Chang, J. H. Lv, H. Y. Qi, Y. H. Ma, D. H. Chen, J. Xie, Y. H. Sun. Bacterial infection potato tuber soft rot disease detection based on electronic nose. Open Life Sciences, vol. 12, no. 1, pp. 379–385, 2017. DOI: https://doi.org/10.1515/biol-2017-0044.

    Google Scholar 

  89. R. V. Leal, A. X. C. Quiming, J. F. Villaverde, A. N. Yumang, N. B. Linsangan, M. V. C. Caya. Determination of schizophrenia using electronic nose via support vector machine. In Proceedings of the 9th International Conference on Biomedical Engineering and Technology, ACM, Tokyo, Japan, pp. 13–17, 2019. DOI: https://doi.org/10.1145/3326172.3326212.

    Google Scholar 

  90. A. K. Jain, J. C. Mao, K. M. Mohiuddin. Artificial neural networks: A tutorial. Computer, vol. 29, no. 3, pp. 31–44, 1996. DOI: https://doi.org/10.1109/2.485891.

    Google Scholar 

  91. M. L. R. Mendez. Electronic Noses and Tongues in Food Science, London, UK: Academic Press, 2016.

    Google Scholar 

  92. K. Faceli, A. C. P. L. F. De Carvalho, S. O. Rezende. Combining intelligent techniques for sensor fusion. Applied Intelligence, vol. 20, no. 3, pp. 199–213, 2004. DOI: https://doi.org/10.1023/B:APIN.0000021413.05467.20.

    MATH  Google Scholar 

  93. A. D. Wilson. Recent applications of electronic-nose technologies for the noninvasive early diagnosis of gastrointestinal diseases. Multidisciplinary Digital Publishing Institute Proceedings, vol. 2, no. 3, Article number 147, 2018. DOI: https://doi.org/10.3390/ecsa-4-04918.

    Google Scholar 

  94. J. Chilo, J. Pelegri-Sebastia, M. Cupane, T. Sogorb. E-nose application to food industry production. IEEE Instrumentation & Measurement Magazine, vol. 19, no. 1, pp. 27–33, 2016. DOI: https://doi.org/10.1109/MIM.2016.7384957.

    Google Scholar 

  95. Y. LeCun, Y. Bengio, G. Hinton. Deep learning. Nature, vol. 521, no. 7553, pp. 436–444, 2015. DOI: https://doi.org/10.1038/nature14539.

    Google Scholar 

  96. T. H. Chan, K. Jia, S. H. Gao, J. W. Lu, Z. N. Zeng, Y. Ma. PCANet: A simple deep learning baseline for image classification? IEEE Transactions on Image Processing, vol. 24, no. 12, pp. 5017–5032, 2015. DOI: https://doi.org/10.1109/TIP.2015.2475625.

    MathSciNet  MATH  Google Scholar 

  97. K. M. He, X. Y. Zhang, S. Q. Ren, J. Sun. Deep residual learning for image recognition. In Proceedings of Conference on Computer Vision and Pattern Recognition, IEEE, Las Vegas, USA, pp. 770–778, 2016.

    Google Scholar 

  98. B. Zhao, J. S. Feng, X. Wu, S. C. Yan. A survey on deep learning-based fine-grained object classification and semantic segmentation. International Journal of Automation and Computing, vol. 14, no. 2, pp. 119–135, 2017. DOI: https://doi.org/10.1007/s11633-017-1053-3.

    Google Scholar 

  99. A. X. Li, K. X. Zhang, L. W. Wang. Zero-shot finegrained classification by deep feature learning with semantics. International Journal of Automation and Computing, vol. 16, no. 5, pp. 563–574, 2019. DOI: https://doi.org/10.1007/s11633-019-1177-8.

    Google Scholar 

  100. T. S. Buda, B. Caglayan, H. Assem. DeepAD: A generic framework based on deep learning for time series anomaly detection. Proceedings of the 22nd Pacific-Asia Conference Advances in Knowledge Discovery and Data Mining, Springer, Melbourne, Australia, pp. 577–588, 2018. DOI: https://doi.org/10.1007/978-3-319-93034-3-46.

    Google Scholar 

  101. G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. W. M. van der Laak, B. van Ginneken, C. I. Sánchez. A survey on deep learning in medical image analysis. Medical Image Analysis, vol. 42, pp. 6–88, 2017. DOI: https://doi.org/10.1016/j.media.2017.07.005.

    Google Scholar 

  102. L. C. Chen, G. Papandreou, I. Kokkinos, K. P. Murphy, A. L. Yuille. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 4, pp. 834–848, 2018. DOI: https://doi.org/10.1109/TPAMI.2017.2699184.

    Google Scholar 

  103. Z. J. Yao, J. Bi, Y. X. Chen. Applying deep learning to individual and community health monitoring data: A survey. International Journal of Automation and Computing, vol. 15, no. 6, pp. 643–655, 2018. DOI: https://doi.org/10.1007/s11633-018-1136-9.

    Google Scholar 

  104. C. Y. Wu, P. Karanasou, M. J. F. Gales, K. C. Sim. Stimulated deep neural network for speech recognition. In Interspeech 2016, International Speech Communication Association, San Francisco, USA, pp. 400–404, 2016. DOI: https://doi.org/10.21437/Interspeech.2016-580.

    Google Scholar 

  105. X. D. Sun, P. C. Wu, S. C. H. Hoi. Face detection using deep learning: An improved faster RCNN approach. Neurocomputing, vol. 299, pp. 42–50, 2018. DOI: https://doi.org/10.1016/j.neucom.2018.03.030.

    Google Scholar 

  106. R. Ranjan, S. Sankaranarayanan, A. Bansal, N. Bodla, J. C. Chen, V. M. Patel, C. D. Castillo, R. Chellappa. Deep learning for understanding faces: Machines may be just as good, or better, than humans. IEEE Signal Processing Magazine, vol. 35, no. 1, pp. 66–83, 2018. DOI: https://doi.org/10.1109/MSP.2017.2764116.

    Google Scholar 

  107. Y. Z. Lu. A novel face recognition algorithm for distinguishing faces with various angles. International Journal of Automation and Computing, vol. 5, no. 2, pp. 193–197, 2008. DOI: https://doi.org/10.1007/s11633-008-0193-x.

    MathSciNet  Google Scholar 

  108. J. H. Tao, J. Huang, Y. Li, Z. Lian, M. Y. Niu. Semi-supervised ladder networks for speech emotion recognition. International Journal of Automation and Computing, vol. 16, no. 4, pp. 437–448, 2019. DOI: https://doi.org/10.1007/s11633-019-1175-x.

    Google Scholar 

  109. S. Khan, H. Rahmani, S. A. A. Shah, M. Bennamoun, G. Medioni, S. Dickinson. A Guide to Convolutional Neural Networks for Computer Vision, Morgan & Claypool Publishers, San Rafael, USA, pp. 1–207, 2018. DOI: https://doi.org/10.2200/S00822ED1V01Y201712COV015.

    Google Scholar 

  110. D. H. Hubel, T. N. Wiesel. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. The Journal of Physiology, vol. 160, no. 1, pp. 106–154, 1962. DOI: https://doi.org/10.1113/jphysiol.l962.sp006837.

    Google Scholar 

  111. P. F. Qi, Q. H. Meng, M. Zeng. A CNN-based simplified data processing method for electronic noses. In Proceedings of ISOCS/IEEE International Symposium on Olfaction and Electronic Nose, IEEE, Montreal, Canada, pp. 1–3, 2017. DOI: https://doi.org/10.1109/ISOEN.2017.7968887.

    Google Scholar 

  112. P. Peng, X. J. Zhao, X. F. Pan, W. B. Ye. Gas classification using deep convolutional neural networks. Sensors, vol. 18, no. 1, Article number 157, 2018. DOI: https://doi.org/10.3390/s18010157.

    Google Scholar 

  113. G. F. Wei, G. Li, J. Zhao, A. X. He. Development of a Le-Net-5 gas identification CNN structure for electronic noses. Sensors, vol. 19, no. 1, Article number 217, 2019. DOI: https://doi.org/10.3390/s19010217.

    Google Scholar 

  114. H. E. Zhang, W. B. Ye, X. J. Zhao, R. K. F. Teng, X. F. Pan. A novel convolutional recurrent neural network based algorithm for fast gas recognition in electronic nose system. In Proceedings of IEEE International Conference on Electron Devices and Solid State Circuits, IEEE, Shenzhen, China, 2018. DOI: https://doi.org/10.1109/EDSSC.2018.8487105.

    Google Scholar 

  115. D. H. Ackley, G. E. Hinton, T. J. Sejnowski. A learning algorithm for boltzmann machines. Cognitive Science, vol. 9, no. 1, pp. 147–169, 1985. DOI: https://doi.org/10.1016/S0364-0213(85)80012-4.

    Google Scholar 

  116. R. Salakhutdinov, G. Hinton. Deep boltzmann machines. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, Florida, USA, pp. 448–455, 2009.

  117. C. T. Tang, C. M. Huang, K. T. Tang, H. Chen. A scalable and adaptable probabilistic model embedded in an electronic nose for intelligent sensor fusion. In Proceedings of IEEE Biomedical Circuits and Systems Conference, IEEE, Atlanta, USA, 2015. DOI: https://doi.org/10.1109/BioCAS.2015.7348377.

    Google Scholar 

  118. R. Kohavi, F. Provost. Glossary of terms. Glossary of terms. Machine Learning, vol. 30, no. 2–3, pp. 271–274, 1998. DOI: https://doi.org/10.1023/A:1017181826899.

    Google Scholar 

  119. Electronic Sensor Technology, Inc, CA, USA; Available: https://www.estcal.com/, October 21, 2019.

  120. AIRSENSE Analytics, Schwerin, Germany; Available: https://airsense.com/en, October 21, 2019.

  121. Electronic Nose Co., LTD, Bangkok, Thailand; Available: http://e-nose.asia/index.php?lang=en, October 21, 2019.

  122. Sensigent, California, USA; Available: https://www.sensigent.com, October 21, 2019.

  123. FOODsniffer, California, USA; Available: http://www.myfoodsniffer.com/, October 21, 2019.

  124. E-Nose Pty Ltd, Eveleigh NSW, Australia; Available: http://www.e-nose.info/about.html, October 21, 2019.

  125. Alpha MOS, Toulouse, France; Available: https://www.alpha-mos.com/, October 21, 2019.

  126. RoboScientific, Cambridgeshire, UK; Availalbe: http://www.roboscientific.com/, October 21, 2019.

  127. Aryballe, Grenoble, France; Available: https://aryballe.com/, October 21, 2019.

  128. Odotech, Montreal (Quebec) Canada; Available: http://www.odotech.com/en/, October 21, 2019.

  129. FIGARO, Osaka, Japan; Available: https://www.figaro.co.jp/en/, October 21, 2019.

  130. The eNose Company, Zutphen, The Netherlands; Available: https://www.enose.nl/, October 21, 2019.

  131. Y. Yano, K. Yokoyama, E. Tamiya, I. Karube. Direct evaluation of meat spoilage and the progress of aging using biosensors. Analytica Chimica Acta, vol. 320, no. 2–3, pp. 269–276, 1996. DOI: https://doi.org/10.1016/0003-2670(95)00543-9.

    Google Scholar 

  132. M. Garcia, M. Aleixandre, J. Gutierrez, M. C. Horrillo. Electronic nose for ham discrimination. Sensors and Actuators B: Chemical, vol. 114, no. 1, pp. 418–422, 2006. DOI: https://doi.org/10.1016/j.snb.2005.04.045.

    Google Scholar 

  133. J. S. Vestergaard, M. Martens, P. Turkki. Application of an electronic nose system for prediction of sensory quality changes of a meat product (pizza topping) during storage. LWT-Food Science and Technology, vol. 40, no. 6, pp. 1095–1101, 2007. DOI: https://doi.org/10.1016/j.lwt.2006.06.008.

    Google Scholar 

  134. N. El Barbri, E. Llobet, N. El Bari, X. Correig, B. Bouchikhi. Electronic nose based on metal oxide semiconductor sensors as an alternative technique for the spoilage classification of red meat. Sensors, vol. 8, no. 1, pp. 142–156, 2008. DOI: https://doi.org/10.3390/s8010142.

    Google Scholar 

  135. X. Y. Tian, Q. Cai, Y. M. Zhang. Rapid classification of hairtail fish and pork freshness using an electronic nose based on the PCA method. Sensors, vol. 12, no. 1, pp. 260–277, 2012. DOI: https://doi.org/10.3390/s120100260.

    MathSciNet  Google Scholar 

  136. W. Wojnowski, T. Majchrzak, T. Dymerski, J. Gebicki, J. Namiesnik. Portable electronic nose based on electrochemical sensors for food quality assessment. Sensors, vol. 17, no. 12, Article number 2715, 2017. DOI: https://doi.org/10.3390/s17122715.

    Google Scholar 

  137. F. Li, J. Sun, X. Y. Huang, Y. Li, C. D. Zhang, X. R. Su. Establish poultry meat detection and identification model with the electronic nose. Journal of Chinese Institute of Food Science and Technology, vol. 14, no. 2, pp. 255–260, 2014. (in Chinese)

    Google Scholar 

  138. Z. Haddi, N. El Barbri, K. Tahri, M. Bougrini, N. El Bari, E. Llobetd, B. Bouchikhi. Instrumental assessment of red meat origins and their storage time using electronic sensing systems. Analytical Methods, vol. 7, no. 12, pp. 5193–5203, 2015. DOI: https://doi.org/10.1039/C5AY00572H.

    Google Scholar 

  139. K. Timsorn, T. Thoopboochagorn, N. Lertwattanasakul, C. Wongchoosuk. Evaluation of bacterial population on chicken meats using a briefcase electronic nose. Biosystems Engineering, vol. 151, pp. 116–125, 2016. DOI: https://doi.org/10.1016/j.biosystemseng.2016.09.005.

    Google Scholar 

  140. N. Christodoulides, M. P. McRae, G. W. Simmons, S. S. Modak, J. T. McDevitt. Sensors that learn: The evolution from taste fingerprints to patterns of early disease detection. Micromachines, vol. 10, no. 4, Article number 251, 2019. DOI: https://doi.org/10.3390/mi10040251.

    Google Scholar 

  141. D. R. Wijaya, R. Sarno, E. Zulaika, S. I. Sabila. Development of mobile electronic nose for beef quality monitoring. Procedia Computer Science, vol. 124, pp. 728–735, 2017. DOI: https://doi.org/10.1016/j.procs.2017.12.211.

    Google Scholar 

  142. E. Gorska-Horczyczak, I. Wojtasik-Kalinowska, D. Guzek, D. W. Sun, A. Wierzbicka. Differentiation of chill-stored and frozen pork necks using electronic nose with ultra-fast gas chromatography. Journal of Food Process Engineering, vol. 40, no. 5, Article number e12540, 2017. DOI: https://doi.org/10.1111/jfpe.12540.

    Google Scholar 

  143. M. Ghasemi-Varnamkhasti, S. S. Mohtasebi, M. Siadat, S. Balasubramanian. Meat quality assessment by electronic nose (machine olfaction technology). Sensors, vol. 9, no. 8, pp. 6058–6083, 2009. DOI: https://doi.org/10.3390/s90806058.

    Google Scholar 

  144. W. S. Jia, G. Liang, Y. L. Wang, J. H. Wang. Electronic noses as a powerful tool for assessing meat quality: A mini review. Food Analytical Methods, vol. 11, no. 10, pp. 2916–2924, 2018. DOI: https://doi.org/10.1007/s12161-018-1283-1.

    Google Scholar 

  145. M. Rivai, F. Budiman, D. Purwanto, J. Simamora. Meat freshness identification system using gas sensor array and color sensor in conjunction with neural network pattern recognition. Journal of Theoretical and Applied Information Technology, vol. 96, no. 12, pp. 3861–3872, 2018.

    Google Scholar 

  146. J. Z. Tan, W. L. Kerr. Determining degree of roasting in cocoa beans by artificial neural network (ANN)-based electronic nose system and gas chromatography/mass spectrometry (GC/MS). Journal of the Science of Food and Agriculture, vol. 98, no. 10, pp. 3851–3859, 2018. DOI: https://doi.org/10.1002/jsfa.8901.

    Google Scholar 

  147. D. Compagnone, M. Faieta, D. Pizzoni, C. Di Natale, R. Paolesse, T. Van Caelenberg, B. Beheydt, P. Pittia. Quartz crystal microbalance gas sensor arrays for the quality control of chocolate. Sensors and Actuators B: Chemical, vol. 207, pp. 1114–1120, 2015. DOI: https://doi.org/10.1016/j.snb.2014.10.049.

    Google Scholar 

  148. L. F. Valdez, J. M. Gutierrez. Chocolate classification by an electronic nose with pressure controlled generated stimulation. Sensors, vol. 16, no. 10, Article number 1745, 2016. DOI: https://doi.org/10.3390/s16101745.

    Google Scholar 

  149. Z. B. Shi, T. Yu, Q. Zhao, Y. Li, Y. B. Lan. Comparison of algorithms for an electronic nose in identifying liquors. Journal of Bionic Engineering, vol. 5, no. 3, pp. 253–257, 2008. DOI: https://doi.org/10.1016/S1672-6529(08)60032-3.

    Google Scholar 

  150. S. T. Roweis, L. K. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, vol. 290, no. 5500, pp. 2323–2326, 2000. DOI: https://doi.org/10.1126/science.290.5500.2323.

    Google Scholar 

  151. M. M. Macias, J. E. Agudo, A. G. Manso, C. J. G. Orellana, H. M. G. Velasco, R. G. Caballero. A compact and low cost electronic nose for aroma detection. Sensors, vol. 13, no. 5, pp. 5528–5541, 2013. DOI: https://doi.org/10.3390/s130505528.

    Google Scholar 

  152. C. Sanchez, J. Lozano, J. P. Santos, A. Azabal, S. Ruiz-Valdepenas. Discrimination of aromas in beer with electronic nose. In Proceedings of Spanish Conference on Electron Devices, IEEE, Salamanca, Spain, 2018. DOI: https://doi.org/10.1109/CDE.2018.8596955.

    Google Scholar 

  153. C. Pornpanomchai, N. Suthamsmai. Beer classification by electronic nose. In Proceedings of International Conference on Wavelet Analysis and Pattern Recognition, IEEE, Hong Kong, China, pp. 333–338, 2008. DOI: https://doi.org/10.1109/ICWAPR.2008.4635799.

    Google Scholar 

  154. M. Siadat, E. Losson, M. Ghasemi-Varnamkhasti, S. S. Mohtasebi. Application of electronic nose to beer recognition using supervised artificial neural networks. In Proceedings of International Conference on Control, Decision and Information Technologies, IEEE, Metz, France, pp. 640–645, 2014. DOI: https://doi.org/10.1109/CoDIT.2014.6996971.

    Google Scholar 

  155. A. Quarto, D. Soldo, F. Di Lecce, A. Giove, V. Di Lecce, A. Castronovo. Electronic nose for evaluating water use in beer production. In Proceedings of ISOCS/IEEE International Symposium on Olfaction and Electronic Nose, IEEE, Montreal, Canada, 2017. DOI: https://doi.org/10.1109/ISOEN.2017.7968857.

    Google Scholar 

  156. R. Dutta, E. L. Hines, J. W. Gardner, K. R. Kashwan, M. Bhuyan. Tea quality prediction using a tin oxide-based electronic nose: An artificial intelligence approach. Sensors and Actuators B: Chemical, vol. 94, no. 2, pp. 228–237, 2003. DOI: https://doi.org/10.1016/S0925-4005(03)00367-8.

    Google Scholar 

  157. J. S. R. Jang, C. T. Sun, E. Mizutani. Neuro-fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence, Upper Saddle River, USA: Prentice-Hall, 1997.

    Google Scholar 

  158. H. C. Yu, J. Wang, H. Xiao, M. Liu. Quality grade identification of green tea using the eigenvalues of PCA based on the E-nose signals. Sensors and Actuators B: Chemical, vol. 140, no. 2, pp. 378–382, 2009. DOI: https://doi.org/10.1016/j.snb.2009.05.008.

    Google Scholar 

  159. L. Dutta, C. Talukdar, A. Hazarika, M. Bhuyan. A novel low-cost hand-held tea flavor estimation system. IEEE Transactions on Industrial Electronics, vol. 65, no. 6, pp. 4983–4990, 2018. DOI: https://doi.org/10.1109/TIE.2017.2772184.

    Google Scholar 

  160. E. Bona, R. S. Optimized neural network for instant coffee classification through an electronic nose. International Journal of Food Engineering, vol. 7, no. 6, pp. 1556–3758, 2011. DOI: https://doi.org/10.2202/1556-3758.2002.

    Google Scholar 

  161. G. Y. F. Makimori, E. Bona. Commercial instant coffee classification using an electronic nose in tandem with the ComDim-LDA approach. Food Analytical Methods, vol. 12, no. 5, pp. 1067–1076, 2019. DOI: https://doi.org/10.1007/s12161-019-01443-5.

    Google Scholar 

  162. K. J. Flambeau, W. J. Lee, J. Yoon. Discrimination and geographical origin prediction of washed specialty bourbon coffee from different coffee growing areas in Rwanda by using electronic nose and electronic tongue. Food Science and Biotechnology, vol. 26, no. 5, pp. 1245–1254, 2017. DOI: https://doi.org/10.1007/s10068-017-0168-1.

    Google Scholar 

  163. T. Majchrzak, W. Wojnowski, T. Dymerski, J. Gebicki, J. Namiesnik. Electronic noses in classification and quality control of edible oils: A review. Food Chemistry, vol. 246, pp. 192–201, 2018. DOI: https://doi.org/10.1016/j.foodchem.2017.11.013.

    Google Scholar 

  164. E. Choe, D. B. Min. Chemistry of deep-fat frying oils. Journal of Food Science, vol. 72, no. 5, pp. R77–R86, 2007. DOI: https://doi.org/10.1111/j.1750-3841.2007.00352.x.

    Google Scholar 

  165. F. Anwar, A. I. Hussain, S. Iqbal, M. I. Bhanger. Enhancement of the oxidative stability of some vegetable oils by blending with Moringa oleifera oil. Food Chemistry, vol. 103, no. 4, pp. 1181–1191, 2007. DOI: https://doi.org/10.1016/j.foodchem.2006.10.023.

    Google Scholar 

  166. T. Majchrzak, M. Lubinska, A. Rozanska, T. Dymerski, J. Gebicki, J. Namiesnik. Thermal degradation assessment of canola and olive oil using ultra-fast gas chromatography coupled with chemometrics. Monatshefte für Chemie-Chemical Monthly, vol. 148, no. 9, pp. 1625–1630, 2017. DOI: https://doi.org/10.1007/s00706-017-1968-y.

    Google Scholar 

  167. E. Ordukaya, B. Karlik. Quality control of olive oils using machine learning and electronic nose. Journal of Food Quality, vol. 2017, Article number 9272404, 2017. DOI: https://doi.org/10.1155/2017/9272404.

    Google Scholar 

  168. M. J. Oates, P. Fox, L. Sanchez-Rodriguez, A. A. Carbonell-Barrachina, A. Ruiz-Canales. DFT based classification of olive oil type using a sinusoidally heated, low cost electronic nose. Computers and Electronics in Agriculture, vol. 155, pp. 348–358, 2018. DOI: https://doi.org/10.1016/j.compag.2018.10.026.

    Google Scholar 

  169. Y. Yin, Y. F. Hao, Y. Bai, H. C. Yu. A Gaussian-based kernel Fisher discriminant analysis for electronic nose data and applications in spirit and vinegar classification. Journal of Food Measurement and Characterization, vol. 11, no. 1, pp. 24–32, 2017. DOI: https://doi.org/10.1007/s11694-016-9367-3.

    Google Scholar 

  170. R. S. Lima, G. C. Danielski, A. C. S. Pires. Mastitis detection and prediction of milk composition using gas sensor and electrical conductivity. Food and Bioprocess Technology, vol. 11, no. 3, pp. 551–560, 2018. DOI: https://doi.org/10.1007/s11947-017-2029-6.

    Google Scholar 

  171. M. J. Anand, V. Sridhar. Characterisation of gas sensor array for milk spoilage and diseases detection. International Journal of Electronics, Electrical and Computational System, vol. 7, no. 2, pp. 48–52, 2018.

    Google Scholar 

  172. O. Canhoto, N. Magan. Electronic nose technology for the detection of microbial and chemical contamination of potable water. Sensors and Actuators B: Chemical, vol. 106, no. 1, pp. 3–6, 2005. DOI: https://doi.org/10.1016/j.snb.2004.05.029.

    Google Scholar 

  173. R. Palasuek, T. Seesa-ard, C. Kunarak, T. Kerdcharoen. Electronic nose for water monitoring: The relationship between wastewater quality indicators and odor. In Proceedings of the 12th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, IEEE, Hua Hin, Thailand, 2015. DOI: https://doi.org/10.1109/ECTICon.2015.7206961.

    Google Scholar 

  174. A. Blanco-Rodriguez, V. F. Camara, F. Campo, L. Becheran, A. Duran, V. D. Vieira, H. de Melo, A. R. Garcia-Ramirez. Development of an electronic nose to characterize odours emitted from different stages in a wastewater treatment plant. Water Research, vol. 134, pp. 92–100, 2018. DOI: https://doi.org/10.1016/j.watres.2018.01.067.

    Google Scholar 

  175. R. Chandler, A. Das, T. Gibson, R. Dutta. Detection of oil pollution in seawater: Biosecurity prevention using electronic nose technology. In Proceedings of the 31st IEEE International Conference on Data Engineering Workshops, IEEE, Seoul, South Korea, pp. 98–100, 2015. DOI: https://doi.org/10.1109/ICDEW.2015.7129554.

    Google Scholar 

  176. A. C. Bastos, N. Magan. Potential of an electronic nose for the early detection and differentiation between streptomyces in potable water. Sensors and Actuators B: Chemical, vol. 116, no. 1–2, pp. 151–155, 2006. DOI: https://doi.org/10.1016/j.snb.2005.11.073.

    Google Scholar 

  177. A. D. Wilson. Diverse applications of electronic-nose technologies in agriculture and forestry. Sensors, vol. 13, no. 2, pp. 2295–2348, 2013. DOI: https://doi.org/10.3390/s130202295.

    Google Scholar 

  178. L. Y. Chen, D. M. Wong, C. Y. Fang, C. I. Chiu, T. I. Chou, C. C. Wu, S. W. Chiu, K. T. Tang. Development of an electronic-nose system for fruit maturity and quality monitoring. In Proceedings of IEEE International Conference on Applied System Invention, IEEE, Chiba, Japan, pp. 1129–1130, 2018. DOI: https://doi.org/10.1109/ICASI.2018.8394481.

    Google Scholar 

  179. L. Y. Chen, C. C. Wu, T. I. Chou, S. W. Chiu, K. T. Tang. Development of a dual MOS Electronic nose/camera system for improving fruit ripeness classification. Sensors, vol. 18, no. 10, Article number 3256, 2018. DOI: https://doi.org/10.3390/s18103256.

    Google Scholar 

  180. G. James, D. Witten, T. Hastie, R. Tibshirani. An Introduction to Statistical Learning: with Applications in R, New York, USA: Springer, 2013.

    MATH  Google Scholar 

  181. Y. M. Ren, H. S. Ramaswamy, Y. Li, C. L. Yuan, X. L. Ren. Classification of impact injury of apples using electronic nose coupled with multivariate statistical analyses. Journal of Food Process Engineering, vol. 41, no. 5, Article number e12698, 2018. DOI: https://doi.org/10.1111/jfpe.12698.

    Google Scholar 

  182. E. Gobbi, M. Falasconi, G. Zambotti, V. Sberveglieri, A. Pulvirenti, G. Sberveglieri. Rapid diagnosis of Enterobacteriaceae in vegetable soups by a metal oxide sensor based electronic nose. Sensors and Actuators B: Chemical, vol. 207, pp. 1104–1113, 2015. DOI: https://doi.org/10.1016/j.snb.2014.10.051.

    Google Scholar 

  183. L. Dentoni, L. Capelli, S. Sironi, R. Del Rosso, S. Zanetti, M. Della Torre. Development of an electronic nose for environmental odour monitoring. Sensors, vol. 12, no. 11, pp. 14363–14381, 2012. DOI: https://doi.org/10.3390/s121114363.

    Google Scholar 

  184. S. Q. Cui, E. A. A. Inocente, H. P. Zhu, N. Acosta, P. P. Ling, H. M. Keener. Development of portable e-nose system for early diagnosis of insect-stressed tomato plants. In Proceedings of Annual International Meeting, American Society of Agricultural and Biological Engineers, St. Joseph, USA, 2018. DOI: https://doi.org/10.13031/aim.201800990.

    Google Scholar 

  185. S. S. Lin, X. M. Zhang. A rapid and novel method for predicting nicotine alkaloids in tobacco through electronic nose and partial least-squares regression analysis. Analytical Methods, vol. 8, no. 7, pp. 1609–1617, 2016. DOI: https://doi.org/10.1039/C5AY02257F.

    Google Scholar 

  186. D. H. Luo, H. G. Hosseini, J. R. Stewart. Application of ANN with extracted parameters from an electronic nose in cigarette brand identification. Sensors and Actuators B: Chemical, vol. 99, no. 2–3, pp. 253–257, 2004. DOI: https://doi.org/10.1016/j.snb.2003.11.022.

    Google Scholar 

  187. M. Bassetti, G. Poulakou, E. Ruppe, E. Bouza, S. J. Van Hal, A. Brink. Antimicrobial resistance in the next 30 years, humankind, bugs and drugs: A visionary approach. Intensive Care Medicine, vol. 43, no. 10, pp. 1464–1475, 2017. DOI: https://doi.org/10.1007/s00134-017-4878-x.

    Google Scholar 

  188. A. D. Wilson. Electronic-nose devices-potential for noninvasive early disease-detection applications. Annals of Clinical Case Reports, vol. 2, Article number 1401, 2017.

  189. G. Santini, N. Mores, A. Penas, R. Capuano, C. Mondino, A. Trove, F. Macagno, G. Zini, P. Cattani, E. Martinelli, A. Motta, G. Macis, G. Ciabattoni, P. Montuschi. Electronic nose and exhaled breath NMR-based metabolomics applications in airways disease. Current Topics in Medicinal Chemistry, vol. 16, no. 14, pp. 1610–1630, 2016. DOI: https://doi.org/10.2174/1568026616666151223113540.

    Google Scholar 

  190. P. Montuschi, N. Mores, A. Trove, C. Mondino, P. J. Barnes. The electronic nose in respiratory medicine. Respiration, vol. 85, no. 1, pp. 72–84, 2013. DOI: https://doi.org/10.1159/000340044.

    Google Scholar 

  191. A. Voss, V. Baier, R. Reisch, K. von Roda, P. Elsner, H. Ahlers, G. Stein. Smelling renal dysfunction via electronic nose. Annals of Biomedical Engineering, vol. 33, no. 5, pp. 656–660, 2005. DOI: https://doi.org/10.1007/s10439-005-1438-2.

    Google Scholar 

  192. J. Vorobioff, E. Videla, N. Boggio, O. D. Salomon, A. Lamagna, C. A. Rinaldi. Laser vaporization e-nose method for the detection of transmitter of chagas disease. Sensors and Actuators B: Chemical, vol. 257, pp. 200–206, 2018. DOI: https://doi.org/10.1016/j.snb.2017.10.143.

    Google Scholar 

  193. H. M. Saraoglu, B. Edin. E-nose system for anesthetic dose level detection using artificial neural network. Journal of Medical Systems, vol. 31, no. 6, pp. 475–482, 2007. DOI: https://doi.org/10.1007/s10916-007-9087-7.

    Google Scholar 

  194. J. J. More. The levenberg-marquardt algorithm: Implementation and theory. Numerical Analysis, G. A. Watson, Ed., Berlin, Germany: Springer, pp. 105–116, 1978. DOI: https://doi.org/10.1007/BFb0067700.

    Google Scholar 

  195. J. A. Covington, E. W. Westenbrink, N. Ouaret, R. Harbord, C. Bailey, N. OS’Connell, J. Cullis, N. Williams, C. U. Nwokolo, K. D. Bardhan, R. P. Arasaradnam. Application of a novel tool for diagnosing bile acid diarrhoea. Sensors, vol. 13, no. 9, pp. 11899–11912, 2013. DOI: https://doi.org/10.3390/s130911899.

    Google Scholar 

  196. A. K. Pavlou, N. Magan, C. McNulty, J. Jones, D. Sharp, J. Brown, A. P. Turner. Use of an electronic nose system for diagnoses of urinary tract infections. Biosensors and Bioelectronics, vol. 17, no. 10, pp. 893–899, 2002. DOI: https://doi.org/10.1016/S0956-5663(02)00078-7.

    Google Scholar 

  197. V. S. Kodogiannis, J. N. Lygouras, A. Tarczynski, H. S. Chowdrey. Artificial odor discrimination system using electronic nose and neural networks for the identification of urinary tract infection. IEEE Transactions on Information Technology in Biomedicine, vol. 12, no. 6, pp. 707–713, 2008. DOI: https://doi.org/10.1109/TITB.2008.917928.

    Google Scholar 

  198. W. Wojnowski, T. Dymerski, J. Gebicki, J. Namiesnik. Electronic noses in medical diagnostics. Current Medicinal Chemistry, vol. 26, no. 1, pp. 197–215, 2019. DOI: https://doi.org/10.2174/0929867324666171004164636.

    Google Scholar 

  199. W. Miekisch, S. Kischkel, A Sawacki, T. Liebau, M. Mieth, J. K. Schubert. Impact of sampling procedures on the results of breath analysis. Journal of Breath Research, vol. 2, no. 2, Article number 026007, 2008. DOI: https://doi.org/10.1088/1752-7155/2/2/026007.

    Google Scholar 

  200. S. M. Abbott, J. B. Elder, P. Spanel, D. Smith. Quantification of acetonitrile in exhaled breath and urinary head-space using selected ion flow tube mass spectrometry. International Journal of Mass Spectrometry, vol. 228, no. 2–3, pp. 655–665, 2003. DOI: https://doi.org/10.1016/S1387-3806(03)00212-4.

    Google Scholar 

  201. T. Majchrzak, W. Wojnowski, G. Piotrowicz, J. Gebicki, J. Namiesnik. Sample preparation and recent trends in volatolomics for diagnosing gastrointestinal diseases. TrAC Trends in Analytical Chemistry, vol. 108, pp. 38–49, 2018. DOI: https://doi.org/10.1016/j.trac.2018.08.020.

    Google Scholar 

  202. A. Amann, G. Poupart, S. Telser, M. Ledochowski, A. Schmid, S. Mechtcheriakov. Applications of breath gas analysis in medicine. International Journal of Mass Spectrometry, vol. 239, no. 2–3, pp. 227–233, 2004. DOI: https://doi.org/10.1016/j.ijms.2004.08.010.

    Google Scholar 

  203. S. Dragonieri, R. Schot, B. J. Mertens, S. Le Cessie, S. A. Gauw, A. Spanevello, O. Resta, N. P. Willard, T. J. Vink, K. F. Rabe, E. H. Bel, P. J. Sterk. An electronic nose in the discrimination of patients with asthma and controls. Journal of Allergy and Clinical Immunology, vol. 120, no. 4, pp. 856–862, 2007. DOI: https://doi.org/10.1016/j.jaci.2007.05.043.

    Google Scholar 

  204. S. Dragonieri, V. N. Quaranta, P. Carratu, T. Ranieri, O. Resta. Exhaled breath profiling by electronic nose enabled discrimination of allergic rhinitis and extrinsic asthma. Biomarkers, vol. 24, no. 1, pp. 70–75, 2019. DOI: https://doi.org/10.1080/1354750X.2018.1508307.

    Google Scholar 

  205. N. Fens, A. H. Zwinderman, M. P. van der Schee, S. B. de Nijs, E. Dijkers, A. C. Roldaan, D. Cheung, E. H. Bel, P. J. Sterk. Exhaled breath profiling enables discrimination of chronic obstructive pulmonary disease and asthma. American Journal of Respiratory and Critical Care Medicine, vol. 180, no. 11, pp. 1076–1082, 2009. DOI: https://doi.org/10.1164/rccm.200906-0939OC.

    Google Scholar 

  206. D. M. Wong, C. Y. Fang, L. Y. Chen, C. I. Chiu, T. I. Chou, C. C. Wu, S. W. Chiu, K. T. Tang. Development of a breath detection method based E-nose system for lung cancer identification. In Proceedings of IEEE International Conference on Applied System Invention, IEEE, Chiba, Japan, pp. 1119–1120, 2018. DOI: https://doi.org/10.1109/ICASI.2018.8394477.

    Google Scholar 

  207. R. van de Goor, M. van Hooren, A. M. Dingemans, B. Kremer, K. Kross. Training and validating a portable electronic nose for lung cancer screening. Journal of Thoracic Oncology, vol. 13, no. 5, pp. 676–681, 2018. DOI: https://doi.org/10.1016/j.jtho.2018.01.024.

    Google Scholar 

  208. N. Leunis, M. L. Boumans, B. Kremer, S. Din, E. Stob-beringh, A. G. H. Kessels, K. W. Kross. Application of an electronic nose in the diagnosis of head and neck cancer. Laryngoscope, vol. 124, no. 6, pp. 1377–1381, 2014. DOI: https://doi.org/10.1002/lary.24463.

    Google Scholar 

  209. A. K. Pavlou, N. Magan, J. M. Jones, J. Brown, P. Klatser, A. P. F. Turner. Detection of Mycobacterium tuberculosis (TB) in vitro and in situ using an electronic nose in combination with a neural network system. Biosensors and Bioelectronics, vol. 20, no. 3, pp. 538–544, 2004. DOI: https://doi.org/10.1016/j.bios.2004.03.002.

    Google Scholar 

  210. R. Fend, A. H. J. Kolk, C. Bessant, P. Buijtels, P. R. Klatser, A. C. Woodman. Prospects for clinical application of electronic-nose technology to early detection of mycobacterium tuberculosis in culture and sputum. Journal of Clinical Microbiology, vol. 44, no. 6, pp. 2039–2045, 2006. DOI: https://doi.org/10.1128/JCM.01591-05.

    Google Scholar 

  211. M. Bruins, Z. Rahim, A. Bos, W. W. J. van de Sande, H. P. Endtz, A. van Belkum. Diagnosis of active tuberculosis by e-nose analysis of exhaled air. Tuberculosis, vol. 93, no. 2, pp. 232–238, 2013. DOI: https://doi.org/10.1016/j.tube.2012.10.002.

    Google Scholar 

  212. E. I. Mohamed, E. Bruno, R. Linder, M. Alessandrini, A. Di Girolamo, S. J. Pöppl, A. Puija, A. De Lorenzo. A novel method for diagnosing chronic rhinosinusitis based on an electronic nose. Anales Otorrinolaringologicos Ibero-Americanos, vol. 30, no. 5, pp. 447–457, 2003.

    Google Scholar 

  213. E. R. Thaler, D. D. Lee, C. W. Hanson. Diagnosis of rhinosinusitis with a colorimetric sensor array. Journal of Breath Research, vol. 2, no. 3, Article number 037016, 2008. DOI: https://doi.org/10.1088/1752-7155/2/3/037016.

    Google Scholar 

  214. B. Enderby, D. Smith, W. Carroll, W. Lenney. Hydrogen cyanide as a biomarker for Pseudomonas aeruginosa in the breath of children with cystic fibrosis. Pediatric Pulmonology, vol. 44, no. 2, pp. 142–147, 2009. DOI: https://doi.org/10.1002/ppul.20963.

    Google Scholar 

  215. C. M. H. H. T. Robroeks, J. J. B. N. van Berkel, J. W. Dallinga, Q. Jobsis, L. J. I. Zimmermann, H. J. E. Hendriks, M. F. M. Wouters, C. P. M. van der Grinten, K. D. G. van de Kant, F. J. van Schooten, E. Dompeling. Metabolomics of volatile organic compounds in cystic fibrosis patients and controls. Pediatric Research, vol. 68, no. 1, pp. 75–80, 2010. DOI: https://doi.org/10.1203/00006450-201011001-00143.

    Google Scholar 

  216. Z. J. Cheng, G. Warwick, D. H. Yates, P. S. Thomas. An electronic nose in the discrimination of breath from smokers and non-smokers: A model for toxin exposure. Journal of Breath Research, vol. 3, no. 3, Article number 036003, 2009. DOI: https://doi.org/10.1088/1752-7155/3/3/036003.

    Google Scholar 

  217. T. Saidi, T. G. Welearegay, O. Zaim, O. G. Leon, R. Ionescu, N. E. Bari, B. Bouchikhi. Ability of discrimination of breath from smoker and non-smoker volunteers by using an electronic nose based on WO3 nanowires and SnO2 sensors. In Proceedings of International Symposium on Olfaction and Electronic Nose, ISOEN, Montreal, Canada, pp. 1–3, 2017.

    Google Scholar 

  218. A. Voss, K. Witt, T. Kaschowitz, W. Poitz, A. Ebert, P. Roser, K. J. Bär. Detecting cannabis use on the human skin surface via an electronic nose system. Sensors, vol. 14, no. 7, pp. 13256–13272, 2014. DOI: https://doi.org/10.3390/s140713256.

    Google Scholar 

  219. T. Straume, D. J. Loftus, J. Li, M. A. Coleman, C. E. Davis, K. A. McMonigal, M. Piccini, A. K. Singh. Bio-marker-detection technologies for comprehensive medical diagnosis during deep-space missions. Recent Patents on Space Technology, vol. 3, no. 1, pp. 13–23, 2013. DOI: https://doi.org/10.2174/18776116112029990009.

    Google Scholar 

  220. T. Wasilewski, D. Migon, J. Gebicki, W. Kamysz. Critical review of electronic nose and tongue instruments prospects in pharmaceutical analysis. Analytica Chimica Acta, vol. 1077, pp. 14–29, 2019. DOI: https://doi.org/10.1016/j.aca.2019.05.024.

    Google Scholar 

  221. Z. Haddi, A. Amari, H. Alami, N. El Bari, E. Llobet, B. Bouchikhi. A portable electronic nose system for the identification of cannabis-based drugs. Sensors and Actuators B: Chemical, vol. 155, no. 2, pp. 456–463, 2011. DOI: https://doi.org/10.1016/j.snb.2010.12.047.

    Google Scholar 

  222. S. H. Zheng, W. G. Ren, L. F. Huang. Geoherbalism evaluation of radix Angelica sinensis based on electronic nose. Journal of Pharmaceutical and Biomedical Analysis, vol. 105, pp. 101–106, 2015. DOI: https://doi.org/10.1016/j.jpba.2014.10.033.

    Google Scholar 

  223. R. Munoz, E. C. Sivret, G. Parcsi, R. Lebrero, X. G. Wang, I. H. Suffet, R. M. Stuetz. Monitoring techniques for odour abatement assessment. Water Research, vol. 44, no. 18, pp. 5129–5149, 2010. DOI: https://doi.org/10.1016/j.watres.2010.06.013.

    Google Scholar 

  224. H. Singh, V. B. Raj, J. Kumar, U. Mittal, M. Mishra, A. T. Nimal, M. U. Sharma, V. Gupta. Metal oxide SAW e-nose employing PCA and ANN for the identification of binary mixture of DMMP and methanol. Sensors and Actuators B: Chemical, vol. 200, pp. 147–156, 2014. DOI: https://doi.org/10.1016/j.snb.2014.04.065.

    Google Scholar 

  225. B. Mumyakmaz, K. Karabacak. An E-nose-based indoor air quality monitoring system: Prediction of combustible and toxic gas concentrations. Turkish Journal of Electrical Engineering & Computer Sciences, vol. 23, no. 3, pp. 729–740, 2015. DOI: https://doi.org/10.3906/elk-1304-210.

    Google Scholar 

  226. J. He, L. Y. Xu, P. Wang, Q. Wang. A high precise e-nose for daily indoor air quality monitoring in living environment. Integration, vol. 58, pp. 286–294, 2017. DOI: https://doi.org/10.1016/j.vlsi.2016.12.010.

    Google Scholar 

  227. G. Jasinski, L. Wozniak, P. Kalinowski, P. Jasinski. Evaluation of the electronic nose used for monitoring environmental pollution. In Proceedings of XV International Scientific Conference on Optoelectronic and Electronic Sensors, IEEE, Warsaw, Poland, 2018. DOI: https://doi.org/10.1109/COE.2018.8435146.

    Google Scholar 

  228. M. Ismail, A. A. Majeed, Y. A. Albastaki. A framework for an artificial-neural-network-based electronic nose. Electronic Nose Technologies and Advances in Machine Olfaction, Y. A. Albastaki, F. Albalooshi, Eds., IGI Global, Pennsylvania, USA, pp. 1–24, 2018. DOI: https://doi.org/10.4018/978-1-5225-3862-2.ch001.

    Google Scholar 

  229. M. Sreelatha, G. M. Nasira. Surface acoustic wave e-nose sensor based pattern generation and recognition of toxic gases using artificial neural network techniques. Nature Inspired Computing, B. Panigrahi, M. Hoda, V. Sharma, S. Goel, Eds., Singapore: Springer, pp.135–145, 2018. DOI: https://doi.org/10.1007/978-981-10-6747-1_16.

    Google Scholar 

  230. Y. Bengio, Y. LeCun. Scaling learning algorithms towards AI. Large-scale Kernel Machines, L. Bottou, O. Chapelle, D. DeCoste, J. Weston, Eds., MIT Press, Cambridge, USA, pp. 1–41, 2007.

    Google Scholar 

  231. J. Gebicki, T. Dymerski, J. Namiesnik. Monitoring of odour nuisance from landfill using electronic nose. Chemical Engineering Transactions, vol. 40, pp.85–90, 2014. DOI: https://doi.org/10.3303/CET1440015.

    Google Scholar 

  232. P. K. Sekhar, E. L. Brosha, R. Mukundan, F. H. Garzon. Chemical sensors for environmental monitoring and homeland security. Electrochemical Society Interface, vol. 19, no. 4, pp. 35–40, 2010. DOI: https://doi.org/10.1149/2.F04104if.

    Google Scholar 

  233. J. Wang. Electrochemical sensing of explosives. In Counterterrorist Detection Techniques of Explosives, J. Yinon, Ed., Amsterdam, Netherlands: Elsevier, pp. 91–107, 2007. DOI: https://doi.org/10.1016/B978-044452204-7/50023-7.

    Google Scholar 

  234. M. A. A. Bakar, A. H. Abdullah, F. S. A. Saad, S. A. A. Shukor, A. A. A. Razak, M. H. Mustafa. Electronic nose calibration process for monitoring atmospheric hazards in confined space applications. Journal of Telecommunication, Electronic and Computer Engineering, vol. 10, no. 1–14, pp. 15–19, 2018.

    Google Scholar 

  235. S. Limbo, L. Torri, N. Sinelli, L. Franzetti, E. Casiraghi. Evaluation and predictive modeling of shelf life of minced beef stored in high-oxygen modified atmosphere packaging at different temperatures. Meat Science, vol. 84, no. 1, pp. 129–136, 2010. DOI: https://doi.org/10.1016/j.meatsci.2009.08.035.

    Google Scholar 

  236. E. Poyatos-Racionero, J. V. Ros-Lis, J. L. Vivancos, R. Martinez-Manez. Recent advances on intelligent packaging as tools to reduce food waste. Journal of Cleaner Production, vol. 172, pp. 3398–3409, 2018. DOI: https://doi.org/10.1016/j.jclepro.2017.11.075.

    Google Scholar 

  237. Y. Wang, J. G. Xing, S. Qian. Selectivity enhancement in electronic nose based on an optimized DQN. Sensors, vol. 17, no. 10, Article number 2356, 2017. DOI: https://doi.org/10.3390/s17102356.

    Google Scholar 

  238. F. Röck, N. Barsan, U. Weimar. Electronic nose: Current status and future trends. Chemical Reviews, vol. 108, no. 2, pp. 705–725, 2008. DOI: https://doi.org/10.1021/cr068121q.

    Google Scholar 

  239. A. U. Rehman, A. Bermak. Drift-insensitive features for learning artificial olfaction in e-nose system. IEEE Sensors Journal, vol. 18, no. 17, pp. 7173–7182, 2018. DOI: https://doi.org/10.1109/JSEN.2018.2853674.

    Google Scholar 

  240. A. Vergara, R. Calavia, R. M. Vazquez, A. Mozalev, A. Abdelghani, R. Huerta, E. H. Hines, E. Llobet. Multifrequency interrogation of nanostructured gas sensor arrays: A tool for analyzing response kinetics. Analytical Chemistry, vol. 84, no. 17, pp. 7502–7510, 2012. DOI: https://doi.org/10.1021/ac301506t.

    Google Scholar 

  241. S. Ampuero, J. O. Bosset. The electronic nose applied to dairy products: A review. Sensors and Actuators B: Chemical, vol. 94, no. 1, pp. 1–12, 2003. DOI: https://doi.org/10.1016/S0925-4005(03)00321-6.

    Google Scholar 

  242. C. Wongchoosuk, M. Lutz, T. Kerdcharoen. Detection and classification of human body odor using an electronic nose. Sensors, vol. 9, no. 9, pp. 7234–7249, 2009. DOI: https://doi.org/10.3390/s90907234.

    Google Scholar 

  243. X. Z. Hong, J. Wang. Detection of adulteration in cherry tomato juices based on electronic nose and tongue: Comparison of different data fusion approaches. Journal of Food Engineering, vol. 126, pp. 89–97, 2014. DOI: https://doi.org/10.1016/j.jfoodeng.2013.11.008.

    Google Scholar 

  244. M. S. Yao, W. X. Tang, G. E. Wang, B. Nath, G. Xu. MOF thin film-coated metal oxide nanowire array: Significantly improved chemiresistor sensor performance. Advanced Materials, vol. 28, no. 26, pp. 5229–5234, 2016. DOI: https://doi.org/10.1002/adma.201506457.

    Google Scholar 

  245. R. Trivino, D. Gaibor, J. Mediavilla, A. V. Guarnan. Challenges to embed an electronic nose on a mobile robot. In Proceedings of IEEE ANDESCON, IEEE, Arequipa, Peru, pp. 1–4. DOI: https://doi.org/10.1109/ANDESCON.2016.7836251.

  246. S. Dragonieri, G. Pennazza, P. Carratu, O. Resta. Electronic nose technology in respiratory diseases. Lung, vol. 195, no. 2, pp. 157–165, 2017. DOI: https://doi.org/10.1007/s00408-017-9987-3.

    Google Scholar 

  247. Z. Y. Ma, G. C. Luo, K. Qin, N. Wang, W. N. Niu. Online sensor drift compensation for e-nose systems using domain adaptation and extreme learning machine. Sensors, vol. 18, no. 3, Article number 742, 2018. DOI: https://doi.org/10.3390/s18030742.

    Google Scholar 

  248. A. C. Romain, J. Nicolas. Long term stability of metal oxide-based gas sensors for e-nose environmental applications: An overview. Sensors and Actuators B: Chemical, vol. 146, no. 2, pp. 502–506, 2010. DOI: https://doi.org/10.1016/j.snb.2009.12.027.

    Google Scholar 

  249. R. Laref, D. Ahmadou, E. Losson, M. Siadat. Orthogonal signal correction to improve stability regression model in gas sensor systems. Journal of Sensors, vol. 2017, Article number 9851406, 2017. DOI: https://doi.org/10.1155/2017/9851406.

    Google Scholar 

  250. I. Sayago, M. Aleixandre, J. P. Santos. Development of tin oxide-based nanosensors for electronic nose environmental applications. Biosensors, vol. 9, no. 1, Article number 21, 2019. DOI: https://doi.org/10.3390/bios9010021.

    Google Scholar 

  251. R. Hoekstra, P. Blondeau, F. J. Andrade. Distributed electrochemical sensors: Recent advances and barriers to market adoption. Analytical and Bioanalytical Chemistry, vol. 410, no. 17, pp. 4077–4089, 2018. DOI: https://doi.org/10.1007/s00216-018-1104-9.

    Google Scholar 

  252. C. Sanchez, J. P. Santos, J. Lozano. Use of electronic noses for diagnosis of digestive and respiratory diseases through the breath. Biosensors, vol. 9, no. 1, Article number 35, 2019. DOI: https://doi.org/10.3390/bios9010035.

    Google Scholar 

  253. P. Pelosi, J. Zhu, W. Knoll. From gas sensors to biomimetic artificial noses. Chemosensors, vol. 6, no. 3, Article number 32, 2018. DOI: https://doi.org/10.3390/chemosensors6030032.

    Google Scholar 

  254. M. Mirshahi, V. Partovi Nia, L. Adjengue. Automatic odor prediction for electronic nose. Journal of Applied Statistics, vol. 45, no. 15, pp. 2788–2799, 2018. DOI: https://doi.org/10.1080/02664763.2018.1441382.

    MathSciNet  Google Scholar 

  255. N. Lotfivand, V. Abdolzadeh, M. N. Hamidon. Artificial olfactory system with fault-tolerant sensor array. ISA Transactions, vol. 63, pp. 425–435, 2016. DOI: https://doi.org/10.1016/j.isatra.2016.03.012.

    Google Scholar 

  256. G. Magna, C. Di Natale, E. Martinelli. Self-repairing classification algorithms for chemical sensor array. Sensors and Actuators B: Chemical, vol. 297, Article number 126721, 2019. DOI: https://doi.org/10.1016/j.snb.2019.126721.

    Google Scholar 

  257. G. S. W. Hagler, R. Williams, V. Papapostolou, A. Polidori. Air quality sensors and data adjustment algorithms: When is it no longer a measurement? Environmental Science & Technology, vol. 52, no. 10, pp. 5530–5531, 2018. DOI: https://doi.org/10.1021/acs.est.8b01826.

    Google Scholar 

  258. P. Verma, S. Panda. Polymer selection approaches for designing electronic noses: A comparative study. Sensors and Actuators B: Chemical, vol. 273, pp. 365–376, 2018. DOI: https://doi.org/10.1016/j.snb.2018.06.015.

    Google Scholar 

  259. T. T. Sunil, S. Chaudhuri, V. Mishra. Optimal selection of SAW sensors for e-nose applications. Sensors and Actuators B: Chemical, vol. 219, pp. 238–244, 2015. DOI: https://doi.org/10.1016/j.snb.2015.04.107.

    Google Scholar 

  260. E. Zubritsky. Product review: E-noses keep an eye on the future. Analytical Chemistry, vol. 72, no. 11, pp. 421A–426A, 2000. DOI: https://doi.org/10.1021/ac0028447.

    Google Scholar 

  261. H. Y. Zhou, D. H. Luo, H. GholamHosseini, Z. Li, J. F. He. Identification of Chinese herbal medicines with electronic nose technology: Applications and challenges. Sensors, vol. 17, no. 5, Article number 1073, 2017. DOI: https://doi.org/10.3390/s17051073.

    Google Scholar 

  262. J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. Journal of Machine Learning Research, vol. 13, pp. 281–305, 2012.

    MathSciNet  MATH  Google Scholar 

  263. L. Zhang, D. Zhang, X. Yin, Y. Liu. A novel semi-supervised learning approach in artificial olfaction for E-Nose application. IEEE Sensors Journal, vol. 16, no. 12, pp. 4919–4931, 2016. DOI: https://doi.org/10.1109/JSEN.2016.2551743.

    Google Scholar 

  264. M. Son, J. Y. Lee, H. J. Ko, T. H. Park. Bioelectronic nose: An emerging tool for odor standardization. Trends in Biotechnology, vol. 35, no. 4, pp. 301–307, 2017. DOI: https://doi.org/10.1016/j.tibtech.2016.12.007.

    Google Scholar 

  265. T. Wasilewski, J. Gebicki, W. Kamysz. Bioelectronic nose: Current status and perspectives. Biosensors and Bioelectronics, vol. 87, pp. 480–494, 2017. DOI: https://doi.org/10.1016/j.bios.2016.08.080.

    Google Scholar 

  266. O. S. Kwon, H. S. Song, S. J. Park, S. H. Lee, J. H. An, J. W. Park, H. Yang, H. Yoon, J. Bae, T. H. Park, J. Jang. An ultrasensitive, selective, multiplexed superbioelectronic nose that mimics the human sense of smell. Nano Letters, vol. 15, no. 10, pp. 6559–6567, 2015. DOI: https://doi.org/10.1021/acs.nanolett.5b02286.

    Google Scholar 

  267. T. Wasilewski, J. Gebicki, W. Kamysz. Advances in olfaction-inspired biomaterials applied to bioelectronic noses. Sensors and Actuators B: Chemical, vol. 257, pp. 511–537, 2018. DOI: https://doi.org/10.1016/j.snb.2017.10.086.

    Google Scholar 

  268. H. Breer. Olfactory receptors: Molecular basis for recognition and discrimination of odors. Analytical and Bioanalytical Chemistry, vol. 377, no. 3, pp. 427–433, 2003. DOI: https://doi.org/10.1007/s00216-003-2113-9.

    Google Scholar 

  269. J. H. Lim, T. H. Park. Concept of bioelectronic nose. Bioelectronic Nose: Integration of Biotechnology and Nanotechnology, T. H. Park, Ed., Dordrecht, Netherlands: Springer, pp. 1–22, 2014. DOI: https://doi.org/10.1007/978-94-017-8613-3_1.

    Google Scholar 

  270. S. H. Lee, T. H. Park. Recent advances in the development of bioelectronic nose. Biotechnology and Bioprocess Engineering, vol. 15, no. 1, pp. 22–29, 2010. DOI: https://doi.org/10.1007/s12257-009-3077-1.

    Google Scholar 

  271. F. Di Pietrantonio, M. Benetti, D. Cannata, E. Verona, A. Palla-Papavlu, J. M. Fernandez-Pradas, P. Serra, M. Staiano, A. Varriale, S. D’Auria. A surface acoustic wave bio-electronic nose for detection of volatile odorant molecules. Biosensors and Bioelectronics, vol. 67, pp. 516–523, 2015. DOI: https://doi.org/10.1016/j.bios.2014.09.027.

    Google Scholar 

  272. D. L. Hall, J. Llinas. An introduction to multisensor data fusion. Proceedings of the IEEE, vol. 85, no. 1, pp. 6–23, 1997. DOI: https://doi.org/10.1109/5.554205.

    Google Scholar 

  273. C. X. Dai, X. Y. Huang, D. M. Huang, R. Q. Lv, J. Sun, Z. C. Zhang, M. Ma, J. H. Aheto. Detection of submerged fermentation of Tremella aurantialba using data fusion of electronic nose and tongue. Journal of Food Process Engineering, vol. 42, no. 3, Article number e13002, 2019. DOI: https://doi.org/10.1111/jfpe.13002.

    Google Scholar 

  274. S. Buratti, C. Malegori, S. Benedetti, P. Oliveri, G. Giovanelli. E-nose, e-tongue and e-eye for edible olive oil characterization and shelf life assessment: A powerful data fusion approach. Talanta, vol. 182, pp. 131–141, 2018. DOI: https://doi.org/10.1016/j.talanta.2018.01.096.

    Google Scholar 

  275. N. T. Nguyen, S. T. Wereley, S. A. M. Shaegh. Fundamentals and applications of microfluidics, 3rd ed., Norwood, USA: Artech House, 2019.

    Google Scholar 

  276. M. M. Montazeri, A. O’Brien, M. Hoorfar. Understanding microfluidic-based gas detectors: A numerical model to investigate fundamental sensor operation, influencing phenomena and optimum geometries. Sensors and Actuators B: Chemical, vol. 300, Article number 126904, 2019. DOI: https://doi.org/10.1016/j.snb.2019.126904.

    Google Scholar 

  277. M. Paknahad, A. Ahmadi, J. Rousseau, H. R. Nejad, M. Hoorfar. On-chip electronic nose for wine tasting: A digital microfluidic approach. IEEE Sensors Journal, vol. 17, no. 14, pp. 4322–4329, 2017. DOI: https://doi.org/10.1109/JSEN.2017.2707525.

    Google Scholar 

  278. M. Otto. Chemometrics: Statistics and Computer Application in Analytical Chemistry, 3rd ed., Weinheim, Germany: John Wiley & Sons, 2016. DOI: https://doi.org/10.1002/9783527699377.

    Google Scholar 

  279. Q. Peng, R. G. Tian, F. R. Chen, B. B. Li, H. G. Gao. Discrimination of producing area of Chinese Tongshan kaoliang spirit using electronic nose sensing characteristics combined with the chemometrics methods. Food Chemistry, vol. 178, pp. 301–305, 2015. DOI: https://doi.org/10.1016/j.foodchem.2015.01.023.

    Google Scholar 

  280. O. O. Ojuroye, R. N. Torah, A. O. Komolafe, S. P. Beeby. Embedded capacitive proximity and touch sensing flexible circuit system for electronic textile and wearable systems. IEEE Sensors Journal, vol. 19, no. 16, pp. 6975–6985, 2019. DOI: https://doi.org/10.1109/JSEN.2019.2911561.

    Google Scholar 

  281. Q. Dong, L. P. Du, L. J. Zhuang, R. Li, Q. J. Liu, P. Wang. A novel bioelectronic nose based on brain-machine interface using implanted electrode recording in vivo in olfactory bulb. Biosensors and Bioelectronics, vol. 49, pp. 263–269, 2013. DOI: https://doi.org/10.1016/j.bios.2013.05.035.

    Google Scholar 

  282. Z. H. Wen, W. B. Ye, X. J. Zhao, X. F. Pan. A novel 1D deep convolutional neural network based algorithm for mixture gases recognition. In Proceedings of the 61st International Midwest Symposium on Circuits and Systems, IEEE, Windsor, Canada, pp. 893–896. DOI: https://doi.org/10.1109/MWSCAS.2018.8624038.

  283. X. J. Zhao, Z. H. Wen, X. F. Pan, W. B. Ye, A. Bermak. Mixture gases classification based on multi-label one-dimensional deep convolutional neural network. IEEE Access, vol. 7, pp. 12630–12637, 2019. DOI: https://doi.org/10.1109/AC-CESS.2019.2892754.

    Google Scholar 

  284. A. X. He, G. F. Wei, J. Yu, Z. N. Tang, Z. H. Lin, P. J. Wang. A novel dictionary learning method for gas identification with a gas sensor array. IEEE Transactions on Industrial Electronics, vol. 64, no. 12, pp. 9709–9715, 2017. DOI: https://doi.org/10.1109/TIE.2017.2748034.

    Google Scholar 

  285. W. Cao, C. M. Liu, P. F. Jia. Feature extraction and classification of citrus juice by using an enhanced L-KSVD on data obtained from electronic nose. Sensors, vol. 19, no. 4, Article number 916, 2019. DOI: https://doi.org/10.3390/s19040916.

    Google Scholar 

  286. Y. Oktar, M. Turkan. A review of sparsity-based clustering methods. Signal Processing, vol. 148, pp. 20–30, 2018. DOI: https://doi.org/10.1016/j.sigpro.2018.02.010.

    Google Scholar 

  287. L. Meier, S. Van De Geer, P. Buhlmann. The group lasso for logistic regression. Journal of the Royal Statistical Society Series B, vol. 70, no. 1, pp. 53–71, 2008. DOI: https://doi.org/10.1111/j.1467-9868.2007.00627.x.

    MathSciNet  MATH  Google Scholar 

  288. J. Friedman, T. Hastie, R. Tibshirani. A note on the group lasso and a sparse group lasso, Available: https://arxiv.org/abs/1001.0736, December 17, 2019.

  289. J. Z. Huang, T. Zhang. The benefit of group sparsity. The benefit of group sparsity. The Annals of Statistics, vol. 38, no. 4, pp. 1978–2004, 2010. DOI: https://doi.org/10.1214/09-AOS778.

    MathSciNet  MATH  Google Scholar 

  290. J. Z. Huang, T. Zhang, D. Metaxas. Learning with structured sparsity. Journal of Machine Learning Research, vol. 12, pp. 3371–3412, 2011.

    MathSciNet  MATH  Google Scholar 

  291. Y. C. Eldar, M. Mishali. Robust recovery of signals from a structured union of subspaces. IEEE Transactions on Information Theory, vol. 55, no. 11, pp. 5302–5316, 2009. DOI: https://doi.org/10.1109/TIT.2009.2030471.

    MathSciNet  MATH  Google Scholar 

  292. E. Elhamifar, R. Vidal. Sparse subspace clustering. In Proceedings of Conference on Computer Vision and Pattern Recognition, IEEE, Miami, USA, pp. 2790–2797, 2009.

    Google Scholar 

  293. Y. Oktar, M. Turkan. K-polytopes: A superproblem of k-means. Signal, Image and Video Processing, vol. 13, no. 6, pp. 1207–1214, 2019. DOI: https://doi.org/10.1007/s11760-019-01469-6.

    Google Scholar 

  294. M. Elad. Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing, New York, USA: Springer, 2010.

    MATH  Google Scholar 

  295. E. Okur, M. Turkan. A survey on automated melanoma detection. Engineering Applications of Artificial Intelligence, vol. 73, pp. 50–67, 2018. DOI: https://doi.org/10.1016/j.engappai.2018.04.028.

    Google Scholar 

  296. I. Rodriguez-Lujan, J. Fonollosa, R. Huerta. Machine learning methods in electronic nose analysis. In Proceedings of Advances and Applications of Data Science and Engineering, UPCommons, Madrid, Spain, 2016.

    Google Scholar 

  297. J. Cepelewicz. Artificial intelligence has a strange new muse: Our sense of smell, [Online], Available: https://www.wired.com/story/artificial-intelligence-has-a-strange-new-muse-our-sense-of-smell/, August 04, 2019.

Download references

Acknowledgements

The authors are thankful to Betul Arslan, Dentist, for fruitful discussions about dental health-care, which lead to innovative ideas.

Author information

Authors and Affiliations

  1. Department of Electrical and Electronics Engineering, Izmir University of Economics, Izmir, 35330, Turkey

    Diclehan Karakaya, Oguzhan Ulucan & Mehmet Turkan

Authors
  1. Diclehan Karakaya
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Oguzhan Ulucan
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Mehmet Turkan
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Mehmet Turkan.

Additional information

Recommended by Associate Editor Jyh-Horng Chon

Diclehan Karakaya received the B. Sc. degree (with high honors) in electrical and electronics engineering from Izmir University of Economics, Turkey in 2017. She is currently a master student in electrical and electronics engineering at Izmir University of Economics, Turkey.

Her research interests include image processing, computer vision, machine learning and artificial intelligence.

Oguzhan Ulucan received the B. Sc. degree (with honors) in electrical and electronics engineering from Izmir University of Economics, Turkey in 2017. He is currently a master student in electrical and electronics engineering at Izmir University of Economics, Turkey.

His research interests include image processing, computer vision, machine learning and artificial intelligence.

Mehmet Turkan received the B. Sc. (Hhons) degree in electrical and electronics engineering from Eskisehir Osmangazi University, Turkey in 2004, received the M. Sc. degree in electrical and electronics engineering from Bilkent University, Turkey in 2007. He received the Ph. D. degree in computer science from Bretagne Atlantique Research Center (INRIA) and University of Rennes 1, France in 2011. He is currently an assistant professor of electrical and electronics engineering at the Faculty of Engineering, Izmir University of Economics, Turkey. From January 2013 to July 2015, he was a full-time researcher at Technicolor Research & Innovation Center, Cesson-Sevigne, France, where he was a post-doctoral researcher between November 2011 and December 2012. He was involved with the European Commission (EC) 6th Framework Program (FP6) Multimedia Understanding through Semantics, Computation and Learning Network of Excellence (MUSCLE-NoE), EC FP6 Integrated Three-Dimensional Television-Capture, Transmission, and Display Network of Excellence (3-DTV-NoE), and European UltraHD-4U research projects. He was the recipient of the HUAWEI Best Student Paper Award in the 2010 IEEE International Conference on Image Processing (IEEE-ICIP) and was a nominee for the Best Student Paper Award in the 2011 IEEE-ICIP.

His research interests include signal processing with an emphasis on image and video processing and compression, pattern recognition and classification, computer vision, machine learning and artificial intelligence.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Karakaya, D., Ulucan, O. & Turkan, M. Electronic Nose and Its Applications: A Survey. Int. J. Autom. Comput. 17, 179–209 (2020). https://doi.org/10.1007/s11633-019-1212-9

Download citation

  • Received: 05 August 2019

  • Accepted: 15 November 2019

  • Published: 28 December 2019

  • Issue Date: April 2020

  • DOI: https://doi.org/10.1007/s11633-019-1212-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Artificial intelligence
  • machine learning
  • pattern recognition
  • electronic nose (EN)
  • sensors technology
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.