Orientation Measurement for Objects with Planar Surface Based on Monocular Microscopic Vision

  • Ying Li
  • Xi-Long Liu
  • De XuEmail author
  • Da-Peng Zhang
Research Article


Orientation measurement of objects is vital in micro assembly. In this paper, we present a novel method based on monocular microscopic vision for 3-D orientation measurement of objects with planar surfaces. The proposed methods aim to measure the orientation of the object, which does not require calibrating the intrinsic parameters of microscopic camera. In our methods, the orientation of the object is firstly measured with analytical computation based on feature points. The results of the analytical computation are coarse because the information about feature points is not fully used. In order to improve the precision, the orientation measurement is converted into an optimization process base on the relationship between deviations in image space and in Cartesian space under microscopic vision. The results of the analytical computation are used as the initial values of the optimization process. The optimized variables are the three rotational angles of the object and the pixel equivalent coefficient. The objective of the optimization process is to minimize the coordinates differences of the feature points on the object. The precision of the orientation measurement is boosted effectively. Experimental and comparative results validate the effectiveness of the proposed methods.


Microscopic vision micro assembly orientation measurement optimization analytical computation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by National Natural Science Foundation of China (Nos. 61733004 and 61873266).


  1. [1]
    X. H. Huang, X. J. Zeng, M. Wang. SVM-based identification and un-calibrated visual servoing for micro-manipulation. International Journal of Automation and Computing, vol 7, no 1}, pp 47–54, 2010} DOI 101007/s11633-010-004CrossRefGoogle Scholar
  2. [2]
    J. Zhang, D. Xu, Z. T. Zhang, W. S. Zhang. Position/force hybrid control system for high precision aligning of small gripper to ring object. International Journal of Automation and Computing, vol. 10, no. 4, pp. 360–367, 2013. DOI: 10.1007/s11633-013-0732-y.CrossRefGoogle Scholar
  3. [3]
    Z. N. Wang, C. Feng, R. Muruganandam, W. T. Ang, S. Y. M. Tan, W. T. Latt. Three-dimensional cell rotation with luidic low-controlled ell manipulating device. IEEE/ASME Transactions on Mechatronics, vol. 21, no. 4, pp. 1995–2003, 2016. OI: 1109/TMECH.2016. 2547959.CrossRefGoogle Scholar
  4. [4]
    S. Liu, D. Xu, D. P. Zhang, Z. T. Zhang. High precision automatic assembly based on microscopic vision and force information. IEEE Transactions on Automation Science and Engineering, vo. 13, @@no 1, pp 382–393, 2016 DOI 10.1109/TASE.2014.2332543.CrossRefGoogle Scholar
  5. [5]
    J. D. Wason, J. T. Wen, J. J. Gorman, N. G. Dagalakis. Automated Multiprobe Microassembly Using Vision Feedback. IEEE Transactions on Robotics, vol. 28, no 5, pp. 1090–1103, 2012. DOI: 10.1109/TRO.2012.2200991.CrossRefGoogle Scholar
  6. [6]
    F. B. Qin, F. Shen, D. P. Zhang, X. L. Liu, D. Xu. Contour primitives of interest extraction method for microscopic images and its application on pose measurement. IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 48, no. 8, pp. 1348–1359, 2018. DOI: 10. 1109/TSMC.2017.2669219.CrossRefGoogle Scholar
  7. [7]
    S. Liu, D. Xu, F. F. Liu, D. P. Zhang, Z. T. Zhang. Relative pose estimation for alignment of long cylindrical components based on microscopic vision. IEEE/ASME Transactions on Mechatronics, vol. 21, no. 3, pp. 1388–1398, 2016. DOI: 10.1109/TMECH.2015.2506906.CrossRefGoogle Scholar
  8. [8]
    F. Shen, W. R. Wu, D. H. Yu, D. Xu, Z. Q. Cao. High-precision automated 3-D assembly with attitude adjustment performed by LMTI and vision-based control. IEEE/ASME Transactions on Mechatronics, vol. 20, no. 4, pp. 1777–1789, 2015. DOI: 10.1109/TMECH.2014. 2354261.CrossRefGoogle Scholar
  9. [9]
    M. Majidi, A. Erfanian, H. Khaloozadeh. A new approach to estimate true position of unmanned aerial vehicles in an INS/GPS integration system in GPS spoofing attack conditions. International Journal of Automation and Computing, vol. 15, no. 6, pp. 747–760, 2018. DOI: 10.1007/s11633-018-1137-8.CrossRefGoogle Scholar
  10. [10]
    S. J. Su, Y. X. Zhou, Z. H. Wang, H. Chen. Monocular vision- and IMU-based system for prosthesis pose estimation during total hip replacement surgery. IEEE Transactions on Biomedical Circuits and Systems, vol. 11, no. 3, pp. 661–670, 2017. DOI: 10.1109/TBCAS.2016.2643626.CrossRefGoogle Scholar
  11. [11]
    A. Assa, F. Janabi-Sharifi. A robust vision-based sensor fusion approach for real-time pose estimation. IEEE Transactions on Cybernetics, vol. 44, no. 2, pp. 217–227, 2014. DOI: 10.1109/TCYB.2013.2252339.CrossRefGoogle Scholar
  12. [12]
    T. Hatanaka, M. Fujita. Cooperative estimation of averaged 3-D moving target poses via networked visual motion observer. IEEE Transactions on Automatic Control, vol. 58, no. 3, pp. 623–638, 2013. DOI: 10.1109/TAC. 2012.2215732.MathSciNetCrossRefGoogle Scholar
  13. [13]
    O. S. Gedik, A. A. Alatan. 3-D rigid body tracking using vision and depth sensors. IEEE Transactions on Cybernetics, vol. 43, no. 5, pp. 1395–1405, 2013. DOI: 10.1109/TCYB. 2013.2272735.CrossRefGoogle Scholar
  14. [14]
    N. Kyriakoulis, A. Gasteratos. Color-based monocular visuoinertial 3-D pose estimation of a Volant Robot. IEEE Transactions on Instrumentation and Measurement, vol. 59, no. 10, pp. 2706–2715, 2010. DOI: 10.1109/TIM. 2010.2045258.CrossRefGoogle Scholar
  15. [15]
    C. Meng, Z. X. Li, H. C. Sun, D. Yuan, X. Z. Bai, F. G. Zhou. Satellite pose estimation via single perspective circle and line. IEEE Transactions on Aerospace and Electronic Systems, vol. 54, no. 6, pp. 3084–3095, 2018. DOI: 10.1109/ TAES.2018.2843578.CrossRefGoogle Scholar
  16. [16]
    E. Avci, K. Ohara, C. N. Nguyen, C. Theeravithay-angkura, M. Kojima, T. Tanikawa, Y. Mae, T. Arai. Highspeed automated manipulation of microobjects using a two-fingered microhand. IEEE Transactions on Industrial Electronics, vol. 62, no. 2, pp. 1070–1079, 2015. DOI: 10.1109/TIE.2014.2347004.CrossRefGoogle Scholar
  17. [17]
    Y. Li, D. P. Zhang, X. L. Liu, D. Xu. A pose measurement method for micro sphere based on monocular microscopic vision. Acta Automatica Sinica, vol. 45, no. 7, pp. 1281–1289, 2019. DOI: 10.16383/j.aas.2018.c180009. (in Chinese)Google Scholar

Copyright information

© Institute of Automation, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Research Center of Precision Sensing and Control, Institute of AutomationChinese Academy of SciencesBeijingChina
  2. 2.School of Computer and Control EngineeringUniversity of Chinses Academy of SciencesBeijingChina

Personalised recommendations