Toolpath Interpolation and Smoothing for Computer Numerical Control Machining of Freeform Surfaces: A Review

Abstract

Driven by the ever increasing demand in function integration, more and more next generation high value-added products, such as head-up displays, solar concentrators and intra-ocular-lens, etc., are designed to possess freeform (i.e., non-rotational symmetric) surfaces. The toolpath, composed of high density of short linear and circular segments, is generally used in computer numerical control (CNC) systems to machine those products. However, the discontinuity between toolpath segments leads to high-frequency fluctuation of feedrate and acceleration, which will decrease the machining efficiency and product surface finish. Driven by the ever-increasing need for high-speed high-precision machining of those products, many novel toolpath interpolation and smoothing approaches have been proposed in both academia and industry, aiming to alleviate the issues caused by the conventional toolpath representation and interpolation methods. This paper provides a comprehensive review of the state-of-the-art toolpath interpolation and smoothing approaches with systematic classifications. The advantages and disadvantages of these approaches are discussed. Possible future research directions are also offered.

References

  1. [1]

    X. Jiang, P. Scott, D. Whitehouse. Freeform surface characterisation — A fresh strategy. CIRP Annals, vol. 56, no. 1, pp. 553–556, 2007. DOI: https://doi.org/10.1016/j.cirp.2007.05.132.

    Google Scholar 

  2. [2]

    J. Chaves-Jacob, G. Poulachon, E. Duc. Optimal strategy for finishing impeller blades using 5-axis machining. The International Journal of Advanced Manufacturing Technology, vol. 58, no. 5–8, pp. 573–583, 2012. DOI: https://doi.org/10.1007/S00170-011-3424-1.

    Google Scholar 

  3. [3]

    F. Z. Fang, X. D. Zhang, A. Weckenmann, G. X. Zhang, C. Evans. Manufacturing and measurement of freeform optics. CIRP Annals, vol. 62, no. 2, pp. 823–846, 2013. DOI: https://doi.org/10.1016/j.cirp.2013.05.003.

    Google Scholar 

  4. [4]

    I. S. Jawahir, D. A. Puleo, J. Schoop. Cryogenic machining of biomedical implant materials for improved functional performance, life and sustainability. Procedia CIRP, vol. 46, pp. 7–14, 2016. DOI: https://doi.org/10.1016/j.procir.2016.04.133.

    Google Scholar 

  5. [5]

    National Joint Registry. Joint Replacement Surgery: The National Joint Registry, [Online], Available: https://doi.org/www.hqip.org.uk/, March 8, 2019.

  6. [6]

    U.S. Product Data Association. Initial Graphics Exchange Specification, IGES 5.3, 1996.

  7. [7]

    M. J. Pratt. Introduction to ISO 10303-the STEP standard for product data exchange. Journal of Computing and Information Science in Engineering, vol. 1, no. 1, pp. 102–103, 2001. DOI: https://doi.org/10.1115/1.1354995.

    Google Scholar 

  8. [8]

    T. R. Kramer, F. M. Proctor, E. Messina. The NIST RS274NGC Interpreter-Version 3, Technical Report NI-STIR 6556, Department of Commerce, USA, 2000.

    Google Scholar 

  9. [9]

    Automation Systems and Integration — Numerical Control of Machines — Program Format and Definitions of Address Words — Part 1: Data Format for Positioning, Line Motion and Contouring Control Systems, ISO 6983-1: 2009, December 2009.

  10. [10]

    Y. Zhang, X. L. Bai, X. Xu, Y. X. Liu. STEP-NC based high-level machining simulations integrated with CAD/CAPP/CAM. International Journal of Automation and Computing, vol. 9, no. 5, pp. 506–517, 2012. DOI: https://doi.org/10.1007/s11633-012-0674-9.

    Google Scholar 

  11. [11]

    B. Venu, V. R. Komma, D. Srivastava. STEP-based feature recognition system for B-spline surface features. International Journal of Automation and Computing, vol. 15, no. 4, pp. 500–512, 2018. DOI: https://doi.org/10.1007/s11633-018-1116-0.

    Google Scholar 

  12. [12]

    M. Y. Cheng, M. C. Tsai, J. C. Kuo. Real-time NURBS command generators for CNC servo controllers. International Journal of Machine Tools and Manufacture, vol. 42, no. 7, pp. 801–813, 2002. DOI: https://doi.org/10.1016/S0890-6955(02)00015-9.

    Google Scholar 

  13. [13]

    K. Nakamoto, T. Ishida, N. Kitamura, Y. Takeuchi. Fabrication of microinducer by 5-axis control ultraprecision micromilling. CIRP Annals, vol. 60, no. 1, pp. 407–410, 2011. DOI: https://doi.org/10.1016/j.cirp.2011.03.021.

    Google Scholar 

  14. [14]

    S. J. Yutkowitz. Apparatus and Method for Smooth Cornering in A Motion Control System, U.S. Patent 6922606, July 2005.

  15. [15]

    S. S. Yeh, P. L. Hsu. Adaptive-feedrate interpolation for parametric curves with a confined chord error. Computer-Aided Design, vol. 34, no. 3, pp. 229–237, 2002. DOI: https://doi.org/10.1016/S0010-4485(01)00082-3.

    Google Scholar 

  16. [16]

    L. Piegl, W. Tiller, The NURBS Book, 2nd ed., New York, USA: Springer-Verlag, 1996.

    Google Scholar 

  17. [17]

    Y. F. Tsai, R. T. Farouki, B. Feldman. Performance analysis of CNC interpolators for time-dependent feedrates along PH curves. Computer Aided Geometric Design, vol. 18, no. 3, pp. 245–265, 2001. DOI: https://doi.org/10.1016/S0167-8396(01)00029-2.

    MathSciNet  MATH  Google Scholar 

  18. [18]

    C. Brecher, S. Lange, M. Merz, F. Niehaus, C. Wenzel, M. Winterschladen, M. Weck. NURBS based ultra-precision free-form machining. CIRP Annals, vol. 55, no. 1, pp. 547–550, 2006. DOI: https://doi.org/10.1016/S0007-8506(07)60479-X.

    Google Scholar 

  19. [19]

    A. Vijayaraghavan, A. Sodemann, A. Hoover, J. Rhett Mayor, D. Dornfeld. Trajectory generation in high-speed, high-precision micromilling using subdivision curves. International Journal of Machine Tools and Manufacture, vol. 50, no. 4, pp. 394–403, 2010. DOI: https://doi.org/10.1016/j.ijmachtools.2009.10.010.

    Google Scholar 

  20. [20]

    Z. Q. Yin, Y. F. Dai, S. Y. Li, C. L. Guan, G. P. Tie. Fabrication of off-axis aspheric surfaces using a slow tool servo. International Journal of Machine Tools and Manufacture, vol. 51, no. 5, pp. 404–410, 2011. DOI: https://doi.org/10.1016/j.ijmachtools.2011.01.008.

    Google Scholar 

  21. [21]

    X. S. Wang, X. Q. Fu, C. L. Li, M. Kang. Tool path generation for slow tool servo turning of complex optical surfaces. The International Journal of Advanced Manufacturing Technology, vol. 79, no. 1–4, pp. 437–448, 2015. DOI: https://doi.org/10.1007/s00170-015-6846-3.

    Google Scholar 

  22. [22]

    L. Lu, J. Han, C. Fan, L. Xia. A predictive feedrate schedule method for sculpture surface machining and corresponding B-spline-based irredundant PVT commands generating method. The International Journal of Advanced Manufacturing Technology, vol. 98, no. 5–8, pp. 1763–1782, 2018. DOI: https://doi.org/10.1007/s00170-018-2180-x.

    Google Scholar 

  23. [23]

    W. B. Zhong, X. C. Luo, W. L. Chang, F. Ding, Y. K. Cai. A real-time interpolator for parametric curves. International Journal of Machine Tools and Manufacture, vol. 125, pp. 133–145, 2018. DOI: https://doi.org/10.1016/j.ijmachtools.2017.11.010.

    Google Scholar 

  24. [24]

    FANUC Corporation. FANUC Series 30i/31i/32i/35i-MODEL B, [Online], Available: https://doi.org/www.fanuc.co.jp/en/product/cnc/fs_30i-b.html, March 8, 2019.

  25. [25]

    Siemens AG. SIEMENS SINUMERIK 840D sl Brochure, [Online], Available: https://doi.org/www.industry.usa.siemens.com/drives/us/en/cnc/systems-and-products/Documents/Brochure-SINUMERIK-840D-sl.pdf, March 8, 2019.

  26. [26]

    HEIDENHAIN Corporation. HEIDENHAN iTNC 530 Brochure, [Online], Available: https://doi.org/www.heidenhain.de/fileadmin/pdb/media/img/895822-25_iTNC530_Design7_en.pdf, March 8, 2019.

  27. [27]

    Delta Tau Data Systems Inc. Power PMAC User’s Manual, [Online], Available: https://doi.org/www.deltatau.com/manuals/, March 8, 2019.

  28. [28]

    Aerotech Inc. Automation 3200 Brochure, [Online], Available: https://doi.org/www.aerotech.co.uk/product-catalog/motion-controller/a3200.aspx, March 8, 2019.

  29. [29]

    F. C. Wang, D. C. H. Yang. Nearly arc-length parameterized quintic-spline interpolation for precision machining. Computer Aided Geometric Design, vol. 25, no. 5, pp. 281–288, 1993. DOI: https://doi.org/10.1016/0010-4485(93)90085-3.

    MATH  Google Scholar 

  30. [30]

    F. C. Wang, P. K. Wright, B. A. Barsky, D. C. H. Yang. Approximately Arc-length parametrized C3 quintic interpolatory splines. Journal of Mechanical Design, vol. 121, no. 3, pp. 430–439, 1999. DOI: https://doi.org/10.1115/1.2829479.

    Google Scholar 

  31. [31]

    R. V Fleisig, A. D. Spence. A constant feed and reduced angular acceleration interpolation algorithm for multi-axis machining. Journal of Mechanical Design, vol. 33, no. 1, pp. 1–15, 2001. DOI: https://doi.org/10.1016/S0010-4485(00)00049-X.

    Google Scholar 

  32. [32]

    R. T. Farouki, S. Shah. Real-time CNC interpolators for Pythagorean-hodograph curves. Computer Aided Geometric Design, vol. 13, no. 7, pp. 583–600, 1996. DOI: https://doi.org/10.1016/0167-8396(95)00047-X.

    MATH  Google Scholar 

  33. [33]

    R. T. Farouki, M. Al-Kandari, T. Sakkalis. Hermite interpolation by rotation-invariant spatial pythagorean-hodograph curves. Advances in Computational Mathematics, vol. 17, no. 4, pp. 369–383, 2002. DOI: https://doi.org/10.1023/A:1016280811626.

    MathSciNet  MATH  Google Scholar 

  34. [34]

    K. Erkorkmaz, Y. Altintas. Quintic spline interpolation with minimal feed fluctuation. Journal of Manufacturing Science and Engineering, vol. 127, no. 2, pp. 339–349, 2005. DOI: https://doi.org/10.1115/1.1830493.

    Google Scholar 

  35. [35]

    K. Erkorkmaz, M. Heng. A heuristic feedrate optimization strategy for NURBS toolpaths. CIRP Annals, vol. 57, no. 1, pp. 407–410, 2008. DOI: https://doi.org/10.1016/j.cirp.2008.03.039.

    Google Scholar 

  36. [36]

    M. Heng, K. Erkorkmaz. Design of a NURBS interpolator with minimal feed fluctuation and continuous feed modulation capability. International Journal of Machine Tools and Manufacture, vol. 50, no. 3, pp. 281–293, 2010. DOI: https://doi.org/10.1016/j.ijmachtools.2009.11.005.

    Google Scholar 

  37. [37]

    K. Erkorkmaz, S. E. Layegh, I. Lazoglu, H. Erdim. Feedrate optimization for freeform milling considering constraints from the feed drive system and process mechanics. CIRP Annals, vol. 62, no. 1, pp. 395–398, 2013. DOI: https://doi.org/10.1016/j.cirp.2013.03.084.

    Google Scholar 

  38. [38]

    W. T. Lei, M. P. Sung, L. Y. Lin, J. J. Huang. Fast realtime NURBS path interpolation for CNC machine tools. International Journal of Machine Tools and Manufacture, vol. 47, no. 10, pp. 1530–1541, 2007. DOI: https://doi.org/10.1016/j.ijmachtools.2006.11.011.

    Google Scholar 

  39. [39]

    Y. Koren, C. C. Lo, M. Shpitalni. CNC interpolators: Algorithms and analysis. Manufacturing Science and Engineering, vol. 64, pp. 83–92, 1993.

    Google Scholar 

  40. [40]

    M. Shpitalni, Y. Koren, C. C. Lo. Realtime curve interpolators. Computer-aided Design, vol. 26, no. 11, pp. 832–838, 1994. DOI: https://doi.org/10.1016/0010-4485(94)90097-3.

    MATH  Google Scholar 

  41. [41]

    T. Otsuki, H. Kozai, Y. Wakinotani. Free-form Curve Interpolation Method and Apparatus, U.S. Patent 5815401, September 1998.

  42. [42]

    R. T. Farouki, Y. F. Tsai. Exact taylor series coefficients for variable-feedrate CNC curve interpolators. Computer-Aided Design, vol. 33, no. 2, pp. 155–165, 2001. DOI: https://doi.org/10.1016/S0010-4485(00)00085-3.

    Google Scholar 

  43. [43]

    S. S. Yeh, P. L. Hsu. The speed-controlled interpolator for machining parametric curves. Computer-aided Design, vol. 31, no. 5, pp. 349–357, 1999. DOI: https://doi.org/10.1016/S0010-4485(99)00035-4.

    MATH  Google Scholar 

  44. [44]

    H. Zhao, L. M. Zhu, H. Ding. A parametric interpolator with minimal feed fluctuation for CNC machine tools using arc-length compensation and feedback correction. International Journal of Machine Tools and Manufacture, vol. 75, pp. 1–8, 2013. DOI: https://doi.org/10.1016/j.ijmachtools.2013.08.002.

    Google Scholar 

  45. [45]

    M. Chen, W. S. Zhao, X. C. Xi. Augmented Taylor’s expansion method for B-spline curve interpolation for CNC machine tools. International Journal of Machine Tools and Manufacture, vol. 94, pp. 109–119, 2015. DOI: https://doi.org/10.1016/j.ijmachtools.2015.04.013.

    Google Scholar 

  46. [46]

    Wikipedia. Heun’s Method, [Online], Available: https://doi.org/en.wikipedia.org/wiki/Heun%27s_method, May 20, 2019.

  47. [47]

    J. E. Bobrow. Optimal robot plant planning using the minimum-time criterion. IEEE Journal on Robotics and Automation, vol. 4, no. 4, pp. 443–450, 1988. DOI: https://doi.org/10.1109/56.811.

    Google Scholar 

  48. [48]

    G. Pardo-Castellote, R. H. Jr. Cannon. Proximate time-optimal algorithm for on-line path parameterization and modification. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Minneapolis, USA, pp. 1539–1546, 1996. DOI: https://doi.org/10.1109/ROBOT.1996.506923.

    Google Scholar 

  49. [49]

    D. Verscheure, B. Demeulenaere, J. Swevers, J. De Schutter, M. Diehl. Time-optimal path tracking for robots: A convex optimization approach. IEEE Transactions on Automatic Control, vol. 54, no. 10, pp. 2318–2327, 2009. DOI: https://doi.org/10.1109/TAC.2009.2028959.

    MathSciNet  MATH  Google Scholar 

  50. [50]

    S. D. Timar, R. T. Farouki, T. S. Smith, C. L. Boyadjieff. Algorithms for time-optimal control of CNC machines along curved tool paths. Robotics and Computer-Integrated Manufacturing, vol. 21, no. 1, pp. 37–53, 2005. DOI: https://doi.org/10.1016/j.rcim.2004.05.004.

    Google Scholar 

  51. [51]

    S. D. Timar, R. T. Farouki. Time-optimal traversal of curved paths by Cartesian CNC machines under both constant and speed-dependent axis acceleration bounds. Robotics and Computer-integrated Manufacturing, vol. 23, no. 5, pp. 563–579, 2007. DOI: https://doi.org/10.1016/j.rcim.2006.07.002.

    Google Scholar 

  52. [52]

    J. Dong, J. A. Stori. Optimal feed-rate scheduling for highspeed contouring. Journal of Manufacturing Science and Engineering, vol. 129, no. 1, pp. 63–76, 2004. DOI: https://doi.org/10.1115/1.2280549.

    Google Scholar 

  53. [53]

    J. Dong, J. A. Stori. A generalized time-optimal bidirectional scan algorithm for constrained feed-rate optimization. Journal of Dynamic Systems, Measurement, and Control, vol. 128, no. 2, pp. 379–390, 2006. DOI: https://doi.org/10.1115/1.2194078.

    Google Scholar 

  54. [54]

    J. Y. Dong, P. M. Ferreira, J. A. Stori. Feed-rate optimization with jerk constraints for generating minimum-time trajectories. International Journal of Machine Tools and Manufacture, vol. 47, no. 12–13, pp. 1941–1955, 2007. DOI: https://doi.org/10.1016/j.ijmachtools.2007.03.006.

    Google Scholar 

  55. [55]

    T. Yong, R. Narayanaswami. A parametric interpolator with confined chord errors, acceleration and deceleration for NC machining. Computer-aided Design, vol. 35, no. 13, pp. 1249–1259, 2003. DOI: https://doi.org/10.1016/S0010-4485(03)00043-5.

    Google Scholar 

  56. [56]

    J. X. Guo, K. Zhang, Q. Zhang, X. S. Gao. Efficient time-optimal feedrate planning under dynamic constraints for a high-order CNC servo system. Computer-aided Design, vol. 45, no. 12, pp. 1538–1546, 2013. DOI: https://doi.org/10.1016/j.cad.2013.07.002.

    Google Scholar 

  57. [57]

    Z. Y. Jia, D. N. Song, J. W. Ma, G. Q. Hu, W. W. Su. A NURBS interpolator with constant speed at feedrate-sensitive regions under drive and contour-error constraints. International Journal of Machine Tools and Manufacture, vol. 116, pp. 1–17, 2017. DOI: https://doi.org/10.1016/j.ijmachtools.2016.12.007.

    Google Scholar 

  58. [58]

    S. H. Suh, S. K. Kang, D. H. Chung, I. Stroud. Theory and Design of CNC Systems, London, UK: Springer, 2008. DOI: https://doi.org/10.1007/978-1-84800-336-1.

    Google Scholar 

  59. [59]

    M. Annoni, A. Bardine, S. Campanelli, P. Foglia, C. A. Prete. A real-time configurable NURBS interpolator with bounded acceleration, jerk and chord error. Computeraided Design, vol. 44, no. 6, pp. 509–521, 2012. DOI: https://doi.org/10.1016/j.cad.2012.01.009.

    Google Scholar 

  60. [60]

    X. Beudaert, S. Lavernhe, C. Tournier. Feedrate interpolation with axis jerk constraints on 5-axis NURBS and G1 tool path. International Journal of Machine Tools and Manufacture, vol. 57, pp. 73–82, 2012. DOI: https://doi.org/10.1016/j.ijmachtools.2012.02.005.

    Google Scholar 

  61. [61]

    Y. A. Jin, Y. He, J. Z. Fu. A look-ahead and adaptive speed control algorithm for parametric interpolation. The International Journal of Advanced Manufacturing Technology, vol. 69, no. 9–12, pp. 2613–2620, 2013. DOI: https://doi.org/10.1007/s00170-013-5241-l.

    Google Scholar 

  62. [62]

    Y. A. Jin, Y. He, J. Z. Fu, Z. W. Lin, W. F. Gan. A fine-interpolation-based parametric interpolation method with a novel real-time look-ahead algorithm. Computer-aided Design, vol. 55, pp. 37–48, 2014. DOI: https://doi.org/10.1016/j.cad.2014.05.002.

    Google Scholar 

  63. [63]

    Y. S. Wang, D. D. Yang, R. L. Gai, S. H. Wang, S. J. Sun. Design of trigonometric velocity scheduling algorithm based on pre-interpolation and look-ahead interpolation. International Journal of Machine Tools and Manufacture, vol. 96, pp. 94–105, 2015. DOI: https://doi.org/10.1016/j.ijmachtools.2015.06.009.

    Google Scholar 

  64. [64]

    D. F. Rogers. An Introduction to NURBS: With Historical Perspective, San Francisco, USA: Elsevier, 2000.

    Google Scholar 

  65. [65]

    SIEMENS. SINUMERIK 840D sl/828D Basic Functions Function Manual, [Online], Available: https://doi.org/cache.industry.Siemens.com/dl/files/431/109476431/att_844512/v1/FB1sl_0115_en_en-US.pdf, May 20, 2019.

  66. [66]

    Aerotech, Inc. A3200 Help File 4.09.000, [Online], Available: https://doi.org/www.aerotechmotioncontrol.com/manuals/index.aspx, May 20, 2019.

  67. [67]

    J. Huang, X. Du, L. M. Zhu. Real-time local smoothing for five-axis linear toolpath considering smoothing error constraints. International Journal of Machine Tools and Manufacture, vol. 124, pp. 67–79, 2018. DOI: https://doi.org/10.1016/j.ijmachtools.2017.10.001.

    Google Scholar 

  68. [68]

    J. X. Yang, A. Yuen. An analytical local corner smoothing algorithm for five-axis CNC machining. International Journal of Machine Tools and Manufacture, vol. 123, pp. 22–35, 2017. DOI: https://doi.org/10.1016/j.ijmachtools.2017.07.007.

    Google Scholar 

  69. [69]

    S. J. Sun, H. Lin, L. M. Zheng, J. G. Yu, Y. Hu. A realtime and look-ahead interpolation methodology with dynamic B-spline transition scheme for CNC machining of short line segments. The International Journal of Advanced Manufacturing Technology, vol. 84, no. 5–8, pp. 1359–1370, 2016. DOI: https://doi.org/10.1007/s00170-015-7776-9.

    Google Scholar 

  70. [70]

    J. Shi, Q. Z. Bi, L. M. Zhu, Y. H. Wang. Corner rounding of linear five-axis tool path by dual PH curves blending. International Journal of Machine Tools and Manufacture, vol. 88, pp. 223–236, 2015. DOI: https://doi.org/10.1016/j.ijmachtools.2014.09.007.

    Google Scholar 

  71. [71]

    Q. Z. Bi, J. Shi, Y. H. Wang, L. M. Zhu, H. Ding. Analytical curvature-continuous dual-Bézier corner transition for five-axis linear tool path. International Journal of Machine Tools and Manufacture, vol. 91, pp. 96–108, 2015. DOI: https://doi.org/10.1016/j.ijmachtools.2015.02.002.

    Google Scholar 

  72. [72]

    S. Tulsyan, Y. Altintas. Local toolpath smoothing for five-axis machine tools. International Journal of Machine Tools and Manufacture, vol. 96, pp. 15–26, 2015. DOI: https://doi.org/10.1016/j.ijmachtools.2015.04.014.

    Google Scholar 

  73. [73]

    B. Sencer, K. Ishizaki, E. Shamoto. A curvature optimal sharp corner smoothing algorithm for high-speed feed motion generation of NC systems along linear tool paths. The International Journal of Advanced Manufacturing Technology, vol. 76, no. 9–12, pp. 1977–1992, 2015. DOI: https://doi.org/10.1007/s00170-014-6386-2.

    Google Scholar 

  74. [74]

    H. Zhao, L. M. Zhu, H. Ding. A real-time look-ahead interpolation methodology with curvature-continuous B-spline transition scheme for CNC machining of short line segments. International Journal of Machine Tools and Manufacture, vol. 65, pp. 88–98, 2013. DOI: https://doi.org/10.1016/j.ijmachtools.2012.10.005.

    Google Scholar 

  75. [75]

    X. Beudaert, S. Lavernhe, C. Tournier. 5-axis local corner rounding of linear tool path discontinuities. International Journal of Machine Tools and Manufacture, vol. 73, pp. 9–16, 2013. DOI: https://doi.org/10.1016/j.ijmachtools.2013.05.008.

    Google Scholar 

  76. [76]

    V. Pateloup, E. Duc, P. Ray. Bspline approximation of circle arc and straight line for pocket machining. Computer-aided Design, vol. 42, no. 9, pp. 817–827, 2010. DOI: https://doi.org/10.1016/j.cad.2010.05.003.

    Google Scholar 

  77. [77]

    FANUC Corporation. FANUC Series 30i-LB Operator’s Manual, [Online], Available: https://doi.org/www.fanuc.co.jp/en/product/cnc/fs_30i-b.html, May 20, 2019.

  78. [78]

    Z. Y. Yang, L. Y. Shen, C. M. Yuan, X. S. Gao. Curve fitting and optimal interpolation for CNC machining under confined error using quadratic B-splines. Computer-aided Design, vol. 66, pp. 62–72, 2015. DOI: https://doi.org/10.1016/j.cad.2015.04.010.

    MathSciNet  Google Scholar 

  79. [79]

    W. Fan, C. H. Lee, J. H. Chen. A realtime curvature-smooth interpolation scheme and motion planning for CNC machining of short line segments. International Journal of Machine Tools and Manufacture, vol. 96, pp. 27–46, 2015. DOI: https://doi.org/10.1016/j.ijmachtools.2015.04.009.

    Google Scholar 

  80. [80]

    Y. S. Wang, D. S. Yang, Y. Z. Liu. A real-time look-ahead interpolation algorithm based on Akima curve fitting. International Journal of Machine Tools and Manufacture, vol. 85, pp. 122–130, 2014. DOI: https://doi.org/10.1016/j.ijmachtools.2014.06.001.

    Google Scholar 

  81. [81]

    A. Yuen, K. Zhang, Y. Altintas. Smooth trajectory generation for five-axis machine tools. International Journal of Machine Tools and Manufacture, vol. 71, pp. 11–19, 2013. DOI: https://doi.org/10.1016/j.ijmachtools.2013.04.002.

    Google Scholar 

  82. [82]

    Delta Tau Data Systems, Inc. Power PMAC User’s Manual Rev. 8, [Online], Available: https://doi.org/www.deltatau.com/manuals/, May 20, 2019.

  83. [83]

    S. Tajima, B. Sencer. Kinematic corner smoothing for high speed machine tools. International Journal of Machine Tools and Manufacture, vol. 108, pp. 27–43, 2016. DOI: https://doi.org/10.1016/j.ijmachtools.2016.05.009.

    Google Scholar 

  84. [84]

    B. Sencer, K. Ishizaki, E. Shamoto. High speed cornering strategy with confined contour error and vibration suppression for CNC machine tools. CIRP Annals, vol. 64, no. 1, pp. 369–372, 2015. DOI: https://doi.org/10.1016/j.cirp.2015.04.102.

    Google Scholar 

  85. [85]

    S. Tajima, B. Sencer, E. Shamoto. Accurate interpolation of machining tool-paths based on FIR filtering. Precision Engineering, vol. 52, pp. 332–344, 2018. DOI: https://doi.org/10.1016/j.precisioneng.2018.01.016.

    Google Scholar 

  86. [86]

    S. Tajima, B. Sencer. Global tool-path smoothing for CNC machine tools with uninterrupted acceleration. International Journal of Machine Tools and Manufacture, vol. 121, pp. 81–95, 2017. DOI: https://doi.org/10.1016/j.ijmachtools.2017.03.002.

    Google Scholar 

  87. [87]

    Y. B. Bai, J. H. Yong, C. Y. Liu, X. M. Liu, Y. Meng. Polyline approach for approximating Hausdorff distance between planar free-form curves. Computer-aided Design, vol. 43, no. 6, pp. 687–698, 2011. DOI: https://doi.org/10.1016/j.cad.2011.02.008.

    Google Scholar 

  88. [88]

    Wikkipedia. Hausdorff Distance, [Online], Available: https://doi.org/en.wikipedia.org/wiki/Hausdorff_distance, March 17, 2019.

  89. [89]

    T. Otsuki, S. Ide, H. Shiobara. Curve Interpolating Method, U.S. Patent 7274969 B2, 2007.

Download references

Acknowledgements

The authors acknowledge the support from the UK Engineering and Physical Sciences Research Council (EPSRC) under the program (No. EP/K018345/1) and the International Cooperation Program of China (No. 2015DFA70630).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xi-Chun Luo.

Additional information

Wen-Bin Zhong received the Ph.D. degree in ultra precision machining from the University of Strathclyde, UK in 2018. He is currently a research fellow at the Engineering and Physical Sciences Research Council (EPSRC) Future Metrology Hub, the University of Huddersfield, UK.

His research interests include ultra precision machining technologies, computer numerical control, on-machine metrology and system integration of complex machine tools.

Xi-Chun Luo received the Ph.D. degree in ultra precision manufacturing at Harbin Institute of Technology, China in 2002. He is a professor in ultra precision manufacturing and technical director of Centre for Precision Manufacturing at the University of Strathclyde, UK. He is a Fellow of the International Society for Nanomanufacturing.

His research interests include ultra precision machining brittle materials, freeform machining, precision motion control, hybrid micromachining and nanomanufacturing.

Wen-Long Chang received the Ph.D. degree in mechanical engineering at Heriot-Watt University (2012) where he initiated a novel hybrid micromachining approach with the award of a prestigious Scottish Overseas Research Studentship. Currently he is an EPSRC and Horizon 2020 Postdoc Research Associate within the Centre for Precision Manufacturing at DMEM, University of Strathclyde, UK.

His research interests include micro-precision machining technologies, short pulse laser machining, laser assisted micro machining, machine tool design and system integration.

Yu-Kui Cai received the B.Sc. degree in mechanical engineering from Qingdao University of Science and Technology, China in 2011, the Ph.D. degree in mechanical engineering from Shandong University, China in 2016. He is a Marie Sklodowska-Curie Early Stage Research Fellow in the Centre for Precision Manufacturing at the University of Strathclyde, UK. He has already published more than 30 papers in related fields. He is a member of EUSPEN (European Society for Precision Engineering and Nanotechnology) and IMAPS (International Microelectronics Assembly & Packaging Society).

His research interests lie in the area of microfluidic, micromachining and laser machining, ranging from theory to design and implementation.

Fei Ding received the B.Sc. and M.Sc. degrees in mechanical engineering from Harbin Institute of Technology, China in 2013 and 2015, respectively. He is currently a Ph.D. degree candidate in mechanical engineering at University of Strathclyde, UK.

His research interests include ultra-precision machine tool design and precision motion control.

Hai-Tao Liu received the Ph. D. degree in mechanical engineering from the Harbin Institute of Technology, China in 2010. He is currently an associate professor in the Harbin Institute of Technology, China.

His research interests include micro machining technology and equipment, ultra-precision machining mechanism, machining technology and equipment, ultra-clean manufacturing, laser incremental manufacturing.

Ya-Zhou Sun received the Ph.D. degree in ultra-precision machining from Harbin Institute of Technology, China in 2005. He is currently a professor at the School of Mechatronics Engineering, Harbin Institute of Technology, China.

His research interests include ultraprecision machining technologies and ultra-precision machine design.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhong, WB., Luo, XC., Chang, WL. et al. Toolpath Interpolation and Smoothing for Computer Numerical Control Machining of Freeform Surfaces: A Review. Int. J. Autom. Comput. 17, 1–16 (2020). https://doi.org/10.1007/s11633-019-1190-y

Download citation

Keywords

  • Computer numerical control (CNC)
  • toolpath
  • interpolation
  • smoothing
  • freeform surface