Advertisement

A Survey of the Research Status of Pedestrian Dead Reckoning Systems Based on Inertial Sensors

  • Yuan Wu
  • Hai-Bing Zhu
  • Qing-Xiu DuEmail author
  • Shu-Ming Tang
Review

Abstract

With the development of micro-electromechanical systems (MEMS), miniaturized, low-power and low-cost inertial measurement units (IMUs) have been widely integrated into mobile terminals and smart wearable devices. This provides the prospect of a broad application for the inertial sensor-based pedestrian dead-reckoning (IPDR) systems. Especially for indoor navigation and indoor positioning, the IPDR systems have many unique advantages that other methods do not have. At present, a large number of technologies and methods for IPDR systems are proposed. In this paper, we have analyzed and outlined the IPDR systems based on about 80 documents in the field of IPDR in recent years. The article is structured in the form of an introduction-elucidation-conclusion framework. First, we proposed a general framework to explore the structure of an IPDR system. Then, according to this framework, the IPDR system was divided into six relatively independent subproblems, which were discussed and summarized separately. Finally, we proposed a graph structure of IPDR systems, and a sub-directed graph, formed by selecting a combined path from the start node to the end node, skillfully constitutes a technical route of one specific IPDR system. At the end of the article, we summarized some key issues that need to be resolved before the IPDR systems are widely used.

Keywords

Inertial measurement unit (IMU) pedestrian dead-reckoning indoor navigation technical route general framework 

Notes

Acknowledgements

This work was supported by National Key Research and Development of China (No. 2017YFB1002800)

References

  1. [1]
    L. X. Zheng, W. C. Zhou, W. W. Tang, X. C. Zheng, A. Peng, H. R. Zheng. A 3D indoor positioning system based on low-cost MEMS sensors. Simulation Modelling Practice and Theory, vol. 65, pp. 45–56, 2016. Doi: 10.1016/j.simpat.2016.01.003.CrossRefGoogle Scholar
  2. [2]
    A. Correa, M. Barcelo, A. Morell, J. L. Vicario. A review of pedestrian indoor positioning systems for mass market applications. Sensors, vol. 17, Article number 1927, 2017. Doi: 10.3390/s17081927.Google Scholar
  3. [3]
    J. Gimenez, A. Amicarelli, J. M. Toibero, F. d.Sciascio, R. Carelli. Iterated conditional modes to solve simultaneous localization and mapping in Markov random fields context. International Journal of Automation and Computing, vol. 15, no. 3, pp. 310–324, 2018. Doi: 10.1007/s11633-017-1109-4.Google Scholar
  4. [4]
    T. Z. Lv, C. X. Zhao, H. F. Zhang. An improved Fast-SLAM algorithm based on revised genetic resampling and SR-UPF. International Journal of Automation and Computing, vol. 15, no. 3, pp. 325–334, 2018. Doi: 10.1007/s11633-016-1050-y.CrossRefGoogle Scholar
  5. [5]
    R. Harle. A survey of indoor inertial positioning systems for pedestrians. IEEE Communications Surveys & Tutorials, vol. 15, no. 3, pp. 1281–1293, 2013. Doi: 10.1109/SURV. 2012.121912.00075.CrossRefGoogle Scholar
  6. [6]
    M. G. Puyol, P. Robertson, M. Angermann. Managing large-scale mapping and localization for pedestrians using inertial sensors. In Proceedings of IEEE International Conference on Pervasive Computing and Communications Workshops, San Diego, USA, 2013. Doi: 10.1109/PerComW.2013.6529468.Google Scholar
  7. [7]
    C. Fischer, P. T. Sukumar, M. Hazas. Tutorial: implementing a pedestrian tracker using inertial sensors. IEEE Pervasive Computing, vol. 12, no. 2, pp. 17–27, 2013. DOI: 10.1109/MPRV.2012.16.CrossRefGoogle Scholar
  8. [8]
    Q. L. Yuan, I. M. Chen. Simultaneous localization and capture with velocity information. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, USA, 2011. DOI: 10.1109/IROS.2011.6094447.Google Scholar
  9. [9]
    T. Gädeke, J. Schmid, M. Zahnlecker, W. Stork, K. D. Müller-Glaser. Smartphone pedestrian navigation by foot-IMU sensor fusion. In Proceedings of the Ubiquitous Positioning, Indoor Navigation, and Location Based Service, Helsinki, Finland, 2012. DOI: 10.1109/UPINLBS.2012. 6409787.Google Scholar
  10. [10]
    D. D. Pham, Y. S. Suh. Pedestrian navigation using footmounted inertial sensor and LIDAR. Sensors, vol. 16, no. 1, pp. 120–136, 2016. Doi: 10.3390/s16010120.CrossRefGoogle Scholar
  11. [11]
    C. Fischer, K. Muthukrishnan, M. Hazas, H. Gellersen. Ultrasound-aided pedestrian dead reckoning for indoor navigation. In Proceedings of ACM International Workshop on Mobile Entity Localization and Tracking in GPS-Less Environments, San Francisco, USA, pp. 31–36, 2008. DOI: 10.1145/1410012.1410020.Google Scholar
  12. [12]
    E. Foxlin. Pedestrian tracking with shoe-mounted inertial sensors. IEEE Computer Graphics and Applications, vol. 25, no. 6, pp. 38, 2005. DOI: 10.1109/MCG.2005. 140.CrossRefGoogle Scholar
  13. [13]
    J. C. Alvarez, D. Alvarez, A. López, R. C. González. Pedestrian navigation based on a waist-worn inertial sensor. Sensors, vol. 12, no. 8, pp. 10536–10549, 2012. DOI: 10. 3390/s120810536.CrossRefGoogle Scholar
  14. [14]
    S. K. Park, Y. S. Suh. A zero velocity detection algorithm using inertial sensors for pedestrian navigation systems. Sensors, vol. 10, no. 10, pp. 9163–9178, 2010. DOI: 10.3390/s 101009163.CrossRefGoogle Scholar
  15. [15]
    Z. C. Zhang, H. Y. Wang, Z. H. Zhao, Z. J. Wu. A SVM-based adaptive stance detection method for pedestrian inertial navigation. In Proceedings of the 10th International Conference on Sensing Technology, Nanjing, China, 2016. DOI: 10.1109/ICSensT.2016.7796271.Google Scholar
  16. [16]
    Y. L. Hsu, J. S. Wang, C. W. Chang. A wearable inertial pedestrian navigation system with quaternion-based extende. Kalman filter for pedestrian localization. IEEE Sensors Journal, vol. 17, no. 10, pp. 3193–3206, 2017. DOI: 10.1109/JSEN.2017.2679138.CrossRefGoogle Scholar
  17. [17]
    G. Panahandeh, N. Mohammadiha, A. Leijon, P. Handel. Continuous hidden Markov model for pedestrian activity classification and gait analysis. IEEE Transactions on In-strumentation and Measurement, vol. 62, no. 5, pp. 1073–1083, 2013. DOI: 10.1109/TIM.2012.2236792.CrossRefGoogle Scholar
  18. [18]
    H. M. Zhang, W. Z. Yuan, Q. Shen, T. Li, H. L. Chang. A handheld inertial pedestrian navigation system with accurate step modes and device poses recognition. IEEE Sensors Journal, vol. 15, no. 3, pp. 1421–1429, 2014. DOI: 10.1109/JSEN.2014.2363157.CrossRefGoogle Scholar
  19. [19]
    X. P. Yun, E. R. Bachmann, H. Moore, J. Calusdian. Self-contained position tracking of human movement using small inertial/magnetic sensor modules. In Proceedings of IEEE International Conference on Robotics and Automa-tion, Roma, Italy, pp. 2526–2533, 2007. DOI: 10.1109/ROBOT.2007.363845.Google Scholar
  20. [20]
    P. Kasebzadeh, G. Hendeby, C. Fritsche, F. Gunnarsson, F. Gustafsson. IMU dataset for motion and device mode classification. In Proceedings of International Conference on Indoor Positioning and Indoor Navigation, Sapporo, Japan, 2017. DOI: 10.1109/IPIN.2017.8115956.Google Scholar
  21. [21]
    M. Edel, E. Köppe. An advanced method for pedestrian dead reckoning using BLSTM-RNNs. In Proceedings of International Conference on Indoor Positioning and Indoor Navigation, Banff, Canada, 2015. DOI: 10.1109/IPIN. 2015.7346954.Google Scholar
  22. [22]
    M. Edel M, E. Köppe. Binarized-BLSTM-RNN based human activity recognition. In Proceedings of International Conference on Indoor Positioning and Indoor Navigation, Alcala de Henares, Spain, 2016. DOI: 10.1109/IPIN.2016. 7743581.Google Scholar
  23. [23]
    B. Wagstaff, V. Peretroukhin, J. Kelly. Improving footmounted inertial navigation through real-time motion Springer classification. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation, Sapporo, Japan, 2017. DOI: 10.1109/IPIN.2017.8115947.Google Scholar
  24. [24]
    B. Beaufils, F. Chazal, M. Grelet, B. Michel. Stride detection for pedestrian trajectory reconstruction: A machine learning approach based on geometric patterns. In Proceedings of International Conference on Indoor Positioning and Indoor Navigation, Sapporo, Japan, 2017. DOI: 10. 1109/IPIN.2017.8115867.Google Scholar
  25. [25]
    M. R. Ren, K. Pan, Y. H. Liu, H. Y. Guo, X. D. Zhang, P. Wang. A novel pedestrian navigation algorithm for a footmounted inertial-sensor-based system. Sensors, vol. 16, no. 1, pp. 139–151, 2016. DOI: 10.3390/s16010139.CrossRefGoogle Scholar
  26. [26]
    M. Elhoushi, J. Georgy, A. Noureldin, M. J. Korenberg. Motion mode recognition for indoor pedestrian navigation using portable devices. IEEE Transactions on Instrumentation and Measurement, vol. 65, no. 1, pp. 208–221, 2016. DOI: 10.1109/TIM.2015.2477159.CrossRefGoogle Scholar
  27. [27]
    F. Inderst, F. Pascucci, M. Santoni. 3D pedestrian dead reckoning and activity classification using waist-mounted inertial measurement unit. In Proceedings of International Conference on Indoor Positioning and Indoor Navigation, Banff, Canada, 2015. DOI: 10.1109/IPIN.2015.7346953.Google Scholar
  28. [28]
    M. N. Muhammad, Z. Salcic, K. I. K. Wang. Subtractive clustering as ZUPT detector. In Proceedings of the 11th IEEE International Conference on Ubiquitous Intelligence and Computing and the 11th IEEE International Conference on Autonomic and Trusted Computing and the 14th IEEE International Conference on Scalable Computing and Communications and Its Associated Workshops, Bali, Indonesia, pp. 349–355, 2014. DOI: 10.1109/UIC-ATCScalCom. 2014.114.Google Scholar
  29. [29]
    E. M. Diaz, A. L. M. Gonzalez, F. de Ponte Müller. Standalone inertial pocket navigation system. In Proceedings of IEEE/Institute of Navigation (ION) Position, Location and Navigation Symposium, Monterey, USA, pp. 241–251, 2014. DOI: 10.1109/PLANS.2014.6851382.Google Scholar
  30. [30]
    K. C. Lan, W. Y. Shih. On calibrating the sensor errors of a PDR-based indoor localization system. Sensors, vol. 13, no. 4, pp. 4781–4810, 2013. DOI: 10.3390/s130404781.CrossRefGoogle Scholar
  31. [31]
    J. Perry, J. M. Burnfield. Gait Analysis: Normal and Pathological Function, Thorofare, USA: SLACK Incoporated, 1992.Google Scholar
  32. [32]
    Y. S. Suh, S. Park. Pedestrian inertial navigation with gait phase detection assisted zero velocity updating. In Proceedings of the 4th International Conference on Autonomous Robots and Agents, Wellington, New Zealand, pp. 336–341, 2009. DOI: 10.1109/ICARA.2000.4803999.Google Scholar
  33. [33]
    A. Mannini, V. Genovese, S. A. Maria. Online decoding of hidden Markov models for gait event detection using footmounted gyroscopes. IEEE Journal of Biomedical and Health Informatics, vol. 18, no. 4, pp. 1122–1130, 2014. DOI: 10.1109/JBHI.2013.2293887.CrossRefGoogle Scholar
  34. [34]
    J. Ruppelt, N. Kronenwett, G. F. Trommer. A novel finite state machine based step detection technique for pedestrian navigation systems. In Proceedings of International Conference on Indoor Positioning and Indoor Navigation, Banff, Canada, 2015. DOI: 10.1109/IPIN.2015.7346771.Google Scholar
  35. [35]
    Z. Q. Zhang, X. L. Meng. Use of an inertial/magnetic sensor module for pedestrian tracking during normal walking. IEEE Transactions on Instrumentation and Measurement, vol. 64, no. 3, pp. 776–783, 2015. DOI: 10.1109/TIM.2014.2349211.CrossRefGoogle Scholar
  36. [36]
    X. C. Tian, J. B. Chen, Y. Q. Han, J. Y. Shang, N. Li. A pedestrian navigation system based on MEMS inertial measurement unit. In Proceedings of the 35th Chinese Control Conference, Chengdu, China, pp. 5325–5328, 2016. Doi: 10.1109/ChiCC.2016.7554183.Google Scholar
  37. [37]
    R. Feli. Alonso, E. Zalama Casanova, J. Gómez García-Bermejo. Pedestrian tracking using inertial sensors. Journal of Physical Agents, vol. 3, no. 1, pp. 353, 2009. Doi: 10.14198/JoPha.2009.3.1.05.Google Scholar
  38. [38]
    C. L. Huang, Z. Y. Liao, L. Zhao. Synergism of INS and PDR in self-contained pedestrian tracking with a miniature sensor module. IEEE Sensors Journal, vol. 10, no. 8, pp. 1349–1359, 2010. Doi: 10.1109/JSEN.2010.2044238.CrossRefGoogle Scholar
  39. [39]
    F. Montorsi, F. Pancaldi, G. M. Vitetta. Design and implementation of an inertial navigation system for pedestrians based on a low-cost MEMS IMU. In Proceedings of IEEE International Conference on Communications Workshops, Budapest, Hungary, pp. 57–61, 2013. Doi: 10.1109/ICCW. 2013.6649201.Google Scholar
  40. [40]
    Y. Li, J. G. Wang. A pedestrian navigation system based on low cost IMU. Journal of Navigation, vol. 67, no. 6, pp. 929–949, 2014. DOI: 10.1017/S0373463314000344.CrossRefGoogle Scholar
  41. [41]
    X. C. Zheng, H. Yang, W. W. Tang, S. X, Pu, L. X. Zheng, H. R. Zhng, B. Liao, J. Wang. Indoor pedestrian navigation with shoe-mounted inertial sensors. Multimedia and Ubiquitous Engineering, J. Park, S. C. Chen, J. M. Gil, N. Yen, Eds., Berlin Heidelberg, Germany: Springer, pp. 67–73, 2014. DOI: 10.1007/978-3-642-54900-7—10.CrossRefGoogle Scholar
  42. [42]
    L. X. Zheng, W. C. Zhou, W. W. Tang, X. C. Zheng, H. Yang, S. X. Pu, C. X. Li, B. Y. Tang, Y. N. Tang. A footmounted sensor based 3D indoor positioning approach. In Proceedings of IEEE International Symposium on Autonomous Decentralized Systems, Taichung, Taiwan, China, pp. 145–150, 2015. DOI: 10.1109/ISADS.2015. 49.Google Scholar
  43. [43]
    M. Ilyas, K. Cho, S. H. Baeg, S. Park. Drift reduction in IMU-only pedestrian navigation system in unstructured environment. In Proceedings of the 10th Asian Control Conference, Kota Kinabalu, Malaysia, 2015. DOI: 10.1109/ASCC.2015.7244849.Google Scholar
  44. [44]
    M. Benoussaad, B. Sijobert, K. Mombaur, C. Azeved. Coste. Robust foot clearance estimation based on the integration of foot-mounted IMU acceleration data. Sensors, vol. 16, no. 1, pp. 12–24, 2016. DOI: 10.3390/s16010012.Google Scholar
  45. [45]
    M. Ilyas, K. Cho, S. H. Baeg, S. Park. Drift reduction in pedestrian navigation system by exploiting motion constraints and magnetic field. Sensors, vol. 16, no. 9, Article number 1455, 2016. DOI: 10.3390/s16091455.Google Scholar
  46. [46]
    I. Skog, P. Handel, J. O. Nilsson, J. Rantakokko. Zero-velocity detection-An algorithm evaluation. IEEE Transactions on Biomedical Engineering, vol. 57, no. 11, pp. 2657–2666, 2010. DOI: 10.1109/TBME.2010.2060723.CrossRefGoogle Scholar
  47. [47]
    A. Mikov, A. Moschevikin, A. Fedorov, A. Sikora. A localization system using inertial measurement units from wireless commercial hand-held devices. In Proceedings of International Conference on Indoor Positioning and Indoor Navigation, Montbeliard-Belfort, France, 2013. DOI: 10.1109/IPIN.2013.6817924.Google Scholar
  48. [48]
    W. C. Zhang, X. H. Li, D. Y. Wei, X. C. Ji, H. Yuan. A foot-mounted PDR system based on IMU/EKF+HMM+ ZUPT+ZARU+HDR+Compass algorithm. In Proceedings of International Conference on Indoor Positioning and Indoor Navigation, Sapporo, Japan, 2017. DOI: 10. 1109/IPIN.2017.8115916.Google Scholar
  49. [49]
    Z. Y. Xu, J. M. Wei, B. Zhang, W. J. Yang. A robust method to detect zero velocity for improved 3D personal navigation using inertial sensors. Sensors, vol. 15, no. 4, pp. 7708–7727, 2015. DOI: 10.3390/s150407708.CrossRefGoogle Scholar
  50. [50]
    N. Castaneda, S. Lamy-Perbal. An improved shoe-mounted inertial navigation system. In Proceedings of International Conference on Indoor Positioning and Indoor Navigation, Zurich, Switzerland, 2010. DOI: 10.1109/IPIN. 2010.5646858.Google Scholar
  51. [51]
    S. Lamy-Perbal, M. Boukallel, N. Castaneda. An improved pedestrian inertial navigation system for indoor environments. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, USA, pp. 2505–2510, 2011. DOI: 10.1109/IROS.2011. 6094456.Google Scholar
  52. [52]
    A. Perttula, H. Leppäkoski, M. Kirkko-Jaakkola, P. Davidson, J. Collin, J. Takala. Distributed indoor positioning system with inertial measurements and map matching. IEEE Transactions on Instrumentation and Measurement, vol. 63, no. 11, pp. 2682–2695, 2014. DOI: 10.1109/TIM. 2014.2313951.CrossRefGoogle Scholar
  53. [53]
    J. Taborri, E. Palermo, S. Rossi, P. Cappa. Gait partitioning methods: a systematic review. Sensors, vol. 16, no. 1, pp. 66–85, 2016. DOI: 10.3390/s16010066.CrossRefGoogle Scholar
  54. [54]
    K. Abdulrahim, C. Hide, T. Moore, C. Hill. Aiding MEMS IMU with building heading for indoor pedestrian navigation. In Proceedings of Ubiquitous Positioning Indoor Navigation and Location Based Service, Kirkkonummi, Finland, 2010. DOI: 10.1109/UPINLBS.2010.5653986.Google Scholar
  55. [55]
    J. Pinchin, C. Hide, T. Moore. A particle filter approach to indoor navigation using a foot mounted inertial navigation system and heuristic heading information. In Proceedings of International Conference on Indoor Positioning and Indoor Navigation, Sydney, Australia, 2013. DOI: 10. 1109/IPIN.2012.6418916.Google Scholar
  56. [56]
    J. Pinchin, C. Hide, K. Abdulrahim, T. Moore, C. Hill. Integration of heading-aided MEMS IMU with GPS for pedestrian navigation. In Proceedings of the 24th International Techni cal Meeting of The Satelli te Di vision of the Institute of Navigation, Oregon, Portland, pp. 1346–1356, 2011.Google Scholar
  57. [57]
    Y. Gu, Q. Song, Y. H. Li, M. Ma. Foot-mounted pedestrian navigation based on particle filter with an adaptive weight updating strategy. Journal of Navigation, vol. 68, no. 1, pp. 23–38, 2015. DOI: 10.1017/S0373463314000496.CrossRefGoogle Scholar
  58. [58]
    Gu, Q. Song, Y. H. Li, M. Ma, Z. M. Zhou. An anchor-based pedestrian navigation approach using only inertial sensors. Sensors, vol. 16, no. 3, Article number 334, 2016. DOI: 10.3390/s16030334.Google Scholar
  59. [59]
    A. R. Jiménez, F. Seco, J. C. Prieto, J. Guevara. Indoor pedestrian navigation using an INS/EKF framework for yaw drift reduction and a foot-mounted IMU. In Proceedings of the 7th Workshop on Positioning, Navigation and Communication, Dresden, Germany, pp. 135–143, 2010. DOI: 10.1109/WPNC.2010.5649300.Google Scholar
  60. [60]
    I. Skog, J. O. Nilsson, P. Händel. Evaluation of zero-velocity detectors for foot-mounted inertial navigation systems. In Proceedings of International Conference on Indoor Positioning and Indoor Navigation, Zurich, Switzerland, 2010. DOI: 10.1109/IPIN.2010.5646936.Google Scholar
  61. [61]
    H. Fourati, N. Manamanni, L. Afilal, Y. Handrich. Position estimation approach by Complementary Filter-aided IMU for indoor environment. In Proceedings of European Control Conference, Zurich, Switzerland, pp. 4208–4213, 2013. DOI: 10.23919/ECC.2013.6669211.Google Scholar
  62. [62]
    M. H. Afzal, V. Renaudin, G. Lachapelle. Magnetic field based heading estimation for pedestrian navigation environments. In Proceedings of International Conference on Indoor Positioning and Indoor Navigation, Gu imaraes, Portugal, 2011. DOI: 10.1109/IPIN.2011.6071947.Google Scholar
  63. [63]
    M. Ma, Q. Song, Y. H. Li, Y. Gu, Z. M. Zhou. A heading error estimation approach based on improved Quasi-static magnetic Field detection. In Proceedings of International Conference on Indoor Positioning and Indoor Navigation, Alcala de Henares, Spain, 2016. DOI: 10.1109/IPIN. 2016.7743588.Google Scholar
  64. [64]
    V. Renaudin, C. Combettes, C. Marchand. Toward a free inertial pedestrian navigation reference system. In Proceedings of International Conference on Indoor Positioning and Indoor Navigation, Busan, South Korea, pp.167-176, 2015. DOI: 10.1109/IPIN.2014.7275481.Google Scholar
  65. [65]
    J. Borestein, L. Ojeda, S. Kwanmuang. Heuristic reduction of gyro drift in IMU-based personnel tracking systems. In Proceedings of SPIE Defense, Security and Sensing Conference, Orlando, USA, 2009. DOI: 10.1117/12.816921.Google Scholar
  66. [66]
    R. Ashkar, M. Romanovas, V. Goridko, M. Schwaab, M. Traechtler, Y, Manoli. A low-cost shoe-mounted inertial navigation system with magnetic disturbance compensation. In Proceedings of International Conference on Indoor Positioning and Indoor Navigation, Montbeliard-Belfort, France, 2014. DOI: 10.1109/IPIN.2013.6817896.Google Scholar
  67. [67]
    E. M. Diaz. Inertial pocket navigation system: Unaided 3D positioning. Sensors, vol. 15, no. 4, pp. 9156–9178, 2015. DOI: 10.3390/s150409156.CrossRefGoogle Scholar
  68. [68]
    H. Martin, J. A. Besada, A. M. Bernardos, E.Metola, J. R. Casar. Simplified pedestrian tracking filters with positioning and foot-mounted inertial sensors. International Journal of Distributed Sensor Networks, vol. 2014, Article number 850835, 2014. DOI: 10.1155/2014/850835.Google Scholar
  69. [69]
    H. Benzerrouk, A. Nebylov, P. Closas. MEMS IMU/ZUPT based cubature Kalman filter applied to pedestrian navigation system. In Proceedings of International Electronic Conference on Sensors and Applications, 2014. DOI: 10.3390/ecsa-1-e002.Google Scholar
  70. [70]
    H. Fourati. Heterogeneous data fusion algorithm for pedestrian navigation via foot-mounted inertial measurement unit and complementary filter. IEEE Transactions on Instrumentation and Measurement, vol. 64, no. 1, pp. 221–229, 2014. DOI: 10.1109/TIM.2014.2335912.CrossRefGoogle Scholar
  71. [71]
    H. F. Xing, J. L. Li, B. Hou, Y. J. Zhang, M. F. Guo. Pedestrian stride length estimation from IMU measurements and ANN based algorithm. Journal of Sensors, vol. 2017, Article number 6091261, 2017. DOI: 10.1155/2017/6091261.Google Scholar
  72. [72]
    H. Weinberg. An-602: Using the ADXL202 in pedometer and personal navigation applications. Application Notes American Devices, Norwood, USA: Analog Devices Inc., 2002.Google Scholar
  73. [73]
    J. Scarlet. Enhancing the performance of pedometers using a single accelerometer. Application Notes American Devices, Analog Devices AN-900, Norwood, USA: Application Note Inc., 2005.Google Scholar
  74. [74]
    J. W. Kim, H. J. Jang, D. H. Hwang, C. Park. A Step, Stride an. Heading Determination for the Pedestrian Navigation System. Journal of Global Positioning Systems, vol. 3, no. 1–2, pp. 273–279, 2004. DOI: 10.5081/jgps.3. 1.273.CrossRefGoogle Scholar
  75. [75]
    A. G. Mikov, A. S. Galov. Data processing algorithms for MEMS based multi-component inertial measurement unit for indoor navigation. In Proceedings of the 24th Saint Petersburg International Conference on Integrated Navigation Systems, St. Petersburg, Russia, 2017. DOI: 10.23919/ICINS.2017.7995564.Google Scholar
  76. [76]
    A. Perttula, H. Leppäkoski, M. Kirkko-Jaakkola, P. Davidson, J. Collin, J. Takala. Distributed indoor positioning system with inertial measurements and map matching. IEEE Transactions on Instrumentation and Measurement, vol. 63, no. 11, pp. 2682–2695, 2014. DOI: 10.1109/TIM.2014. 2313951.CrossRefGoogle Scholar
  77. [77]
    W. Kang, Y. Han. SmartPDR: Smartphone-based pedestrian dead reckoning for indoor localization. IEEE Sensors Journal, vol. 15, no. 5, pp. 2906–2916, 2015. DOI: 10.1109/JSEN.2014.2382568.CrossRefGoogle Scholar
  78. [78]
    J. Hightower, G. Borriello. Particle filters for location estimation in ubiquitous computing: A case study. International Conference on Ubiquitous Computing, N. Davies, E. D. Mynatt, I. Siio, Eds., Berlin Heidelberg, Germany: Springer, pp. 88–106, 2004. DOI: 10.1007/978-3-540-30119-6*6.Google Scholar
  79. [79]
    O. Woodman, R. Harle. Pedestrian localisation for indoor environments. In Proceedings of the 10th International Conference on Ubiquitous Computing, ACM, Seoul, Korea, pp. 114–123, 2008. DOI: 10.1145/1409635.1409651.Google Scholar
  80. [80]
    D. A. Medina, M. Schwaab, D. Plaia, M. Romanovas, M. Traechtler, Y. Manoli. A foot-mounted pedestrian localization system with map motion constraints. In Proceedings of the 12th Workshop on Positioning, Navigation and Communication, Dresden, Germany, 2015. DOI: 10.13140/RG.2.1.1385.1289.Google Scholar
  81. [81]
    C. Y. Yu, N. El-Sheimy, H. Y. Lan, Z. B. Liu. Map-based indoor pedestrian navigation using an auxiliary particle filter. Micromachines, vol. 8, no. 7, pp. 225–240, 2017. DOI: 10.3390/mi8070225.CrossRefGoogle Scholar

Copyright information

© Institute of Automation, Chinese Academy of Sciences and Springer-Verlag Gmbh Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of AutomationChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations