Advertisement

Multi-layer Contribution Propagation Analysis for Fault Diagnosis

  • Ruo-Mu TanEmail author
  • Yi Cao
Open Access
Research Article

Abstract

The recent development of feature extraction algorithms with multiple layers in machine learning and pattern recognition has inspired many applications in multivariate statistical process monitoring. In this work, two existing multilayer linear approaches in fault detection are reviewed and a new one with extra layer is proposed in analogy. To provide a general framework for fault diagnosis in succession, this work also proposes the contribution propagation analysis which extends the original definition of contribution of variables in multivariate statistical process monitoring. In fault diagnosis stage, the proposed contribution propagation analysis for multilayer linear feature extraction algorithms is compared with the fault diagnosis results of original contribution plots associated with single layer feature extraction approach. Plots of variable contributions obtained by the aforementioned approaches on the data sets collected from a simulated benchmark case study (Tennessee Eastman process) as well as an industrial scale multiphase flow facility are presented as a demonstration of the usage and performance of the contribution propagation analysis on multilayer linear algorithms.

Keywords

Process monitoring fault detection and diagnosis contribution plots feature extraction multivariate statistics 

Notes

Acknowledgements

This work was supported by the funding from the European Union’s Horizon 2020 research and innovation programme (No. 675215-PRONTO-H2020-MSCA-ITN-2015).

References

  1. [1]
    S. J. Ren, F. Q. Si, J. X. Zhou, Z. L. Qiao, Y. L. Cheng. A new reconstruction-based auto-associative neural network for fault diagnosis in nonlinear systems. Chemometrics and Intelligent Laboratory Systems, vol. 172, pp. 118–128, 2018. DOI: 10.1016/j.chemolab.2017.12.005.CrossRefGoogle Scholar
  2. [2]
    H. Ren, Y. Chai, J. F. Qu, X. Ye, Q. Tang. A novel adaptive fault detection methodology for complex system using deep belief networks and multiple models: A case study on cryogenic propellant loading system. Neurocomputing, vol. 275, pp. 2111–2125, 2018. DOI: 10.1016/j.neucom.2017.10.063.CrossRefGoogle Scholar
  3. [3]
    J. E. Jackson, G. S. Mudholkar. Control procedures for residuals associated with principal component analysis. Technometrics, vol. 21, no. 3, pp. 341–349, 1979. DOI: 10.1080/00401706.1979.10489779.CrossRefzbMATHGoogle Scholar
  4. [4]
    C. Ruiz-Cárcel, Y. Cao, D. Mba, L. Lao, R. T. Samuel. Statistical process monitoring of a multiphase flow facility. Control Engineering Practice, vol. 42, pp. 74–88, 2015. DOI: 10.1016/j.conengprac.2015.04.012.CrossRefGoogle Scholar
  5. [5]
    L. H. Chiang, E. L. Russell, R. D. Braatz. Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis. Chemometrics and Intelligent Laboratory Systems, vol. 50, no. 2, pp. 243–252, 2000. DOI: 10.1016/S0169-7439(99)00061-1.CrossRefGoogle Scholar
  6. [6]
    C. H. Zhao, F. L. Wang, Z. H. Mao, N. Y. Lu, M. X. Jia. Adaptive monitoring based on independent component analysis for multiphase batch processes with limited modeling data. Industrial & Engineering Chemistry Research, vol. 47, no. 9, pp. 3104–3113, 2008. DOI: 10.1021/ie701680y.CrossRefGoogle Scholar
  7. [7]
    M. Misra, H. H. Yue, S. J. Qin, C. Ling. Multivariate process monitoring and fault diagnosis by multi-scale PCA. Computers & Chemical Engineering, vol. 26, no. 9, pp. 1281–1293, 2002. DOI: 10.1016/S0098-1354(02)00093-5.CrossRefGoogle Scholar
  8. [8]
    M. F. Harkat, S. Djelel, N. Doghmane, M. Benouaret. Sensor fault detection, isolation and reconstruction using nonlinear principal component analysis. International Journal of Automation and Computing, vol. 4, no. 2, pp. 149–155, 2007. DOI: 10.1007/s11633-007-0149-6.CrossRefGoogle Scholar
  9. [9]
    B. B. Jiang, X. X. Zhu, D. X. Huang, J. A. Paulson, R. D. Braatz. A combined canonical variate analysis and Fisher discriminant analysis (CVA-FDA) approach for fault diagnosis. Computers & Chemical Engineering, vol. 77, pp. 1–9, 2015. DOI: 10.1016/j.compchemeng.2015.03.001.CrossRefGoogle Scholar
  10. [10]
    R. T. Samuel, Y. Cao. Kernel canonical variate analysis for nonlinear dynamic process monitoring. IFAC-PapersOn-Line, vol. 48, no. 8, pp. 605–610, 2015. DOI: 10.1016/j.ifacol.2015.09.034.CrossRefGoogle Scholar
  11. [11]
    Z. Q. Ge, S. Y. Zhong, Y. W. Zhang. Semisupervised kernel learning for FDA model and its application for fault classification in industrial processes. IEEE Transactions on Industrial Informatics, vol. 12, no. 4, pp. 1403–1411, 2016. DOI: 10.1109/TII.2016.2571680.CrossRefGoogle Scholar
  12. [12]
    Y. Cao, R. T. Samuel. Dynamic latent variable modelling and fault detection of Tennessee Eastman challenge process. In Proceedings of IEEE International Conference on Industrial Technology, IEEE, Taipei, China pp. 842–847, 2016. DOI: 10.1109/ICIT.2016.7474861.Google Scholar
  13. [13]
    P. P. Odiowei, Y. Cao. State-space independent component analysis for nonlinear dynamic process monitoring. Chemometrics and Intelligent Laboratory Systems, vol. 103, no. 1, pp. 59–65, 2010. DOI: 10.1016/j.chemolab.2010.05.014.CrossRefGoogle Scholar
  14. [14]
    Z. Q. Ge, Z. H. Song. Process monitoring based on independent component analysis-principal component analysis (ICA-PCA) and similarity factors. Industrial & Engineering Chemistry Research, vol. 46, no. 7, pp. 2054–2063, 2007. DOI: 10.1021/ie061083g.CrossRefGoogle Scholar
  15. [15]
    C. H. Zhao, F. R. Gao, F. L. Wang. Nonlinear batch process monitoring using phase-based kernel-independent component analysis-principal component analysis (KICAPCA). Industrial & Engineering Chemistry Research, vol. 48, no. 20, pp. 9163–9174, 2009. DOI: 10.1021/ie8012874.CrossRefGoogle Scholar
  16. [16]
    H. K. Chen, X. G. Zhao, S. Y. Sun, M. Tan. PLS-CCA heterogeneous features fusion-based low-resolution human detection method for outdoor video surveillance. International Journal of Automation and Computing, vol. 14, no. 2, pp. 136–146, 2017. DOI: 10.1007/s11633-016-1029-8.CrossRefGoogle Scholar
  17. [17]
    P. Miller, R. E. Swanson, C. E. Heckler. Contribution plots: A missing link in multivariate quality control. Applied Mathematics and Computer Science, vol. 8, no. 4, pp. 775–792, 1998.MathSciNetzbMATHGoogle Scholar
  18. [18]
    B. B. Jiang, D. X. Huang, X. X. Zhu, F. Yang, R. D. Braatz. Canonical variate analysis-based contributions for fault identification. Journal of Process Control, vol. 26, pp. 17–25, 2015. DOI: 10.1016/j.jprocont.2014.12.001.CrossRefGoogle Scholar
  19. [19]
    H. Babamoradi, F. van den Berg, Â. Rinnan. Confidence limits for contribution plots in multivariate statistical process control using bootstrap estimates. Analytica Chimica Acta, vol. 908, pp. 75–84, 2016. DOI: 10.1016/j.aca.2016.01.002.CrossRefGoogle Scholar
  20. [20]
    S. A. Lawal, J. Zhang. Actuator fault monitoring and fault tolerant control in distillation columns. International Journal of Automation and Computing, vol. 14, no. 1, pp. 80–92, 2017. DOI: 10.1007/s11633-016-1037-8.CrossRefGoogle Scholar
  21. [21]
    J. A. Westerhuis, S. P. Gurden, A. K. Smilde. Generalized contribution plots in multivariate statistical process monitoring. Chemometrics and Intelligent Laboratory Systems, vol. 51, no. 1, pp. 95–114, 2000. DOI: 10.1016/S0169-7439(00)00062-9.CrossRefGoogle Scholar
  22. [22]
    C. F. Alcala, S. J. Qin. Reconstruction-based contribution for process monitoring. Automatica, vol. 45, no. 7, pp. 1593–1600, 2009. DOI: 10.1016/j.automatica.2009.02.027.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    S. W. Choi, J. H. Park, I. B. Lee. Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis. Computers & Chemical Engineering, vol. 28, no. 8, pp. 1377–1387, 2004. DOI: 10.1016/j.compchemeng.2003.09.031.CrossRefGoogle Scholar
  24. [24]
    R. M. Tan, Y. Cao. Contribution plots based fault diagnosis of a multiphase flow facility with PCA-enhanced canonical variate analysis. In Proceedings of the 23rd International Conference on Automation and Computing, IEEE, Huddersfield, UK, 2017. DOI: 10.23919/IConAC.2017.8081992.Google Scholar
  25. [25]
    A. Hyvärinen, E. Oja. Independent component analysis: Algorithms and applications. Neural Networks, vol. 13, no. 4–5, pp. 411–430, 2000. DOI: 10.1016/S0893-6080(00)00026-5.CrossRefGoogle Scholar
  26. [26]
    S. J. Qin. Statistical process monitoring: Basics and beyond. Journal of Chemometrics, vol. 17, no. 8–9, pp. 480–502, 2003. DOI: 10.1002/cem.800.CrossRefGoogle Scholar
  27. [27]
    P. P. Odiowei, Y. Cao. Nonlinear dynamic process monitoring using canonical variate analysis and kernel density estimations. Computer Aided Chemical Engineering, vol. 27, pp. 1557–1562, 2009. DOI: 10.1016/S1570-7946(09)70650-9.CrossRefGoogle Scholar
  28. [28]
    S. Yin, S. X. Ding, A. Haghani, H. Y. Hao, P. Zhang. A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman Process. Journal of Process Control, vol. 22, no. 9, pp. 1567–1581, 2012. DOI: 10.1016/j.jprocont.2012.06.009.CrossRefGoogle Scholar
  29. [29]
    J. J. Downs, E. F. Vogel. A plant-wide industrial process control problem. Computers & Chemical Engineering, vol. 17, no. 3, pp. 245–255, 1993. DOI: 10.1016/0098-1354(93)80018-I.CrossRefGoogle Scholar
  30. [30]
    Y. Cao. A benchmark case for statistical process monitoring-Cranfield multiphase flow facility, [Online], Available: https://doi.org/uk.mathworks.com/matlabcentralf/ileexchange/50938-a-benchmark-case-for-statistical-process-monitoring-cranfield-multiphase-flow-facility, 2015.Google Scholar

Copyright information

© The Author(s) 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://doi.org/creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.School of Water, Energy and EnvironmentCranfield UniversityCranfieldUK
  2. 2.College of Chemical and Biological EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations