Skip to main content

Applying Deep Learning to Individual and Community Health Monitoring Data: A Survey


In the recent years, deep learning models have addressed many problems in various fields. Meanwhile, technology development has spawned the big data in healthcare rapidly. Nowadays, application of deep learning to solve the problems in healthcare is a hot research direction. This paper introduces the application of deep learning in healthcare extensively. We focus on 7 application areas of deep learning, which are electronic health records (EHR), electrocardiography (ECG), electroencephalogram (EEG), community healthcare, data from wearable devices, drug analysis and genomics analysis. The scope of this paper does not cover medical image processing since other researchers have already substantially reviewed it. In addition, we analyze the merits and drawbacks of the existing works, analyze the existing challenges, and discuss future trends.


  1. [1]

    Y. Le Cun, Y. Bengio, G. Hinton. Deep learning. Nature, vol. 521, no. 7553, pp. 436–444, 2015. DOI:

    Article  Google Scholar 

  2. [2]

    G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. W. M. van der Laak, B. van Ginneken, C. I. Sánchez. A survey on deep learning in medical image analysis. Medical Image Analysis, vol. 42, pp. 60–88, 2017.

    Article  Google Scholar 

  3. [3]

    H. Greenspan, B. van Ginneken, R. M. Summers. Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique. IEEE Transactions on Medical Imaging, vol. 35, no. 5, pp. 1153–1159, 2016. DOI:

    Article  Google Scholar 

  4. [4]

    D. Ravì, C. Wong, F. Deligianni, M. Berthelot, J. Andreu-Perez, B. Lo, G. Z. Yang. Deep learning for health informatics. IEEE Journal of Biomedical and Health Informatics, vol. 21, no. 1, pp. 4–21, 2017. DOI:

    Article  Google Scholar 

  5. [5]

    F. Rosenblatt. The Perceptron: A Perceiving and Recognizing Automaton, Report 85-60-1. Cornell Aeronautical Laboratory, Buffalo, New York, USA, 1957.

    Google Scholar 

  6. [6]

    P. J. Werbos. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences, Ph. D. dissertation, Harvard University, Harvard, USA, 1974.

    Google Scholar 

  7. [7]

    D. E. Rumelhart, G. E. Hinton, R. J. Williams. Learning representations by back-propagating errors. Cognitive Modeling, vol. 5, no. 3, pp. 533–536, 1988.

    MATH  Google Scholar 

  8. [8]

    Y. Lecun, L. Bottou, Y. Bengio, P. Haffner. Gradientbased learning applied to document recognition. Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998. DOI:

    Article  Google Scholar 

  9. [9]

    G. E. Hinton, S. Osindero, Y. W. Teh. A fast learning algorithm for deep belief nets. Neural Computation, vol. 18, no. 7, pp. 1527–1554, 2006. DOI:

    MathSciNet  Article  MATH  Google Scholar 

  10. [10]

    A. Krizhevsky, I. Sutskever, G. Hinton. Imagenet classification with deep convolutional neural networks. In Proceedings of Advances in Neural Information Processing Systems, Lake Tahoe, USA, pp. 1097–1105, 2012.

    Google Scholar 

  11. [11]

    G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. R. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, B. Kingsbury. Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 82–97, 2012. DOI:

    Article  Google Scholar 

  12. [12]

    R. Miotto, L. Li, B. A. Kidd, J. T. Dudley. Deep patient: An unsupervised representation to predict the future of patients from the electronic health records. Scientific Reports, vol. 6, Article number 26094, 2016. DOI:

  13. [13]

    P. Danaee, R. Ghaeini, D. A. Hendrix. A deep learning approach for cancer detection and relevant gene identification. In Proceedings of Pacific Symposium on Biocomputing, World Scientific, Kohala Coast, USA, 2017.

    Google Scholar 

  14. [14]

    M. M. Al Rahhal, Y. Bazi, H. AlHichri, N. Alajlan, F. Melgani, R. R. Yager. Deep learning approach for active classification of electrocardiogram signals. Information Sciences, vol. 345, pp. 340–354, 2016. DOI:

    Article  Google Scholar 

  15. [15]

    Z. Xu, S. Wang, F. Y. Zhu, J. Z. Huang. Seq2seq fingerprint: An unsupervised deep molecular embedding for drug discovery. In Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics, Boston, USA, pp. 285–294, 2017. DOI:

    Google Scholar 

  16. [16]

    G. E. Hinton, T. J. Sejnowski. Learning and relearning in Boltzmann machines. Parallel Distributed Processing: Explorations in the Microstructure of Cognition, D. E. Rumelhart, J. L. McClelland, Eds., Cambridge, USA: MIT Press, pp. 1, 1986.

    Google Scholar 

  17. [17]

    R. Salakhutdinov, G. E. Hinton. Deep Boltzmann machines. In Proceedings of the 12th International Conference on Artificial Intelligence and Statistics, Clearwater Beach, USA, pp. 448–455, 2009.

    Google Scholar 

  18. [18]

    R. J. Williams, D. Zipser. A learning algorithm for continually running fully recurrent neural networks. Neural Computation, vol. 1, no. 2, pp. 270–280, 1989. DOI:

    Article  Google Scholar 

  19. [19]

    S. Hochreiter, J. Schmidhuber. Long short-term memory. Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997. DOI:

    Article  Google Scholar 

  20. [20]

    J. Chung, C. Gulcehre, K. Cho, Y. Bengio. Empirical evaluation of gated recurrent neural networks on sequence modeling., 2014. (arXiv: 1412.3555)

    Google Scholar 

  21. [21]

    Z. Liang, G. Zhang, J. X. Huang, Q. V. Hu. Deep learning for healthcare decision making with EMRs. In Proceedings of IEEE International Conference on Bioinformatics and Biomedicine, Belfast, UK, pp. 556–559, 2014. DOI:

    Google Scholar 

  22. [22]

    Z. P. Che, S. Purushotham, R. Khemani, Y. Liu. Distilling knowledge from deep networks with applications to healthcare domain. [Online], Available:, 2015.

    Google Scholar 

  23. [23]

    A. N. Jagannatha, H. Yu. Bidirectional RNN for medical event detection in electronic health records. In Proceedings of Conference Association for Computational Linguistics, North American Chapter, Berlin, Germany, pp. 473–482, 2016.

    Google Scholar 

  24. [24]

    Z. C. Lipton, D. C. Kale, C. Elkan, R. Wetzel. Learning to diagnose with LSTM recurrent neural networks., 2015.

    Google Scholar 

  25. [25]

    C. Esteban, O. Staeck, S. Baier, Y. C. Yang, V. Tresp. Predicting clinical events by combining static and dynamic information using recurrent neural networks. In Proceedings of IEEE International Conference on Healthcare Informatics, Chicago, USA, pp. 93–101, 2016. DOI:

    Google Scholar 

  26. [26]

    Z. P. Che, S. Purushotham, K. Cho, D. Sontag, Y. Liu. Recurrent neural networks for multivariate time series with missing values. [Online], Available:, 2016.

    Google Scholar 

  27. [27]

    S. Mehrabi, S. Sohn, D. H. Li, J. J. Pankratz, T. Therneau, J. L. S. Sauver, H. F. Liu, M. Palakal. Temporal pattern and association discovery of diagnosis codes using deep learning. In Proceedings of International Conference on Healthcare Informatics, Dallas, USA, pp. 408–416, 2015. DOI:

    Google Scholar 

  28. [28]

    J. Futoma, J. Morris, J. Lucas. A comparison of models for predicting early hospital readmissions. Journal of Biomedical Informatics, vol. 56, pp. 229–238, 2015. DOI:

    Article  Google Scholar 

  29. [29]

    E. Putin, P. Mamoshina, A. Aliper, M. Korzinkin, A. Moskalev, A. Kolosov, A. Ostrovskiy, C. Cantor, J. Vijg, A. Zhavoronkov. Deep biomarkers of human aging: Application of deep neural networks to biomarker development. AGING, vol. 8, no. 5, pp. 1021–1033, 2016. DOI:

    Article  Google Scholar 

  30. [30]

    Y. Cheng, F. Wang, P. Zhang, J. Y. Hu. Risk prediction with electronic health records: A deep learning approach. In Proceedings of SIAM International Conference on Data Mining, Miami, USA, pp. 432–440, 2016.

    Google Scholar 

  31. [31]

    E. Choi, A. Schuetz, W. F. Stewart, J. M. Sun. Using recurrent neural network models for early detection of heart failure onset. Journal of the American Medical Informatics Association, vol. 24, no. 2, pp. 361–370, 2017. DOI:

    Google Scholar 

  32. [32]

    T. Pham, T. Tran, D. Phung, S. Venkatesh. DeepCare: A deep dynamic memory model for predictive medicine. In Proceedings of the 20th Pacific-Asia Conference on Knowledge Discovery and Data Mining, Springer, Auckland, New Zealand, pp. 30–41, 2016. DOI:

    Chapter  Google Scholar 

  33. [33]

    A. Avati, K. Jung, S. Harman, L. Downing, A. Ng, N. H. Shah. Improving palliative care with deep learning. [Online], Available:, 2017.

    Book  Google Scholar 

  34. [34]

    A. Rajkomar, E. Oren, K. Chen, A. M. Dai, N. Hajaj, M. Hardt, P. J. Liu, X. B. Liu, J. Marcus, M. M. Sun, P. Sundberg, H. Yee, K. Zhang, Y. Zhang, G. Flores, G. E. Duggan, J. Irvine, Q. Le, K. Litsch, A. Mossin, J. Tansuwan, D. Wang, J. Wexler, J. Wilson, D. Ludwig, S. L. Volchenboum, K. Chou, M. Pearson, S. Madabushi, N. H. Shah, A. J. Butte, M. D. Howell, C. Cui, G. S. Corrado, J. Dean. Scalable and accurate deep learning with electronic health records. Nature Partner Journals Digital Medicine, vol. 1, pp. 1–10, 2018. DOI:

    Google Scholar 

  35. [35]

    F. Dernoncourt, J. Y. Lee, O. Uzuner, P. Szolovits. Deidentification of patient notes with recurrent neural networks. Journal of the American Medical Informatics Association, vol. 24, no. 3, pp. 596–606, 2017. DOI:

    Google Scholar 

  36. [36]

    S. Chauhan, L. Vig. Anomaly detection in ECG time signals via deep long short-term memory networks. In Proceedings of IEEE International Conference on Data Science and Advanced Analytics, Paris, France, 2015. DOI:

    Google Scholar 

  37. [37]

    Y. Yan, X. B. Qin, Y. G. Wu, N. N. Zhang, J. P. Fan, L. Wang. A restricted Boltzmann machine based two-lead electrocardiography classification. In Proceedings of the 12th IEEE International Conference on Wearable and Implantable Body Sensor Networks, Cambridge, USA, pp. 1–9, 2015. DOI:

    Google Scholar 

  38. [38]

    U. R. Acharya, H. Fujita, S. L. Oh, Y. Hagiwara, J. H. Tan, M. Adam. Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals. Information Sciences, vol. 415–416, pp. 190–198, 2017. DOI:

    Article  Google Scholar 

  39. [39]

    Z. J. Yao, Z. Y. Zhu, Y. X. Chen. Atrial fibrillation detection by multi-scale convolutional neural networks. In Proceedings of the 20th International Conference on Information Fusion, Xi’an, China, pp. 1–6, 2017. DOI:

    Google Scholar 

  40. [40]

    P. Rajpurkar, A. Y. Hannun, M. Haghpanahi, C. Bourn, A. Y. Ng. Cardiologist-level arrhythmia detection with convolutional neural networks., 2017.

    Google Scholar 

  41. [41]

    D. Wulsin, J. Blanco, R. Mani, B. Litt. Semi-supervised anomaly detection for EEG waveforms using deep belief nets. In Proceedings of the 9th International Conference on Machine Learning and Applications, Washington DC, USA, pp. 436–441, 2010. DOI:

    Google Scholar 

  42. [42]

    A. Page, J. Turner, T. Mohsenin, T. Oates. Comparing raw data and feature extraction for seizure detection with deep learning methods. In Proceedings of the 27th International Flairs Conference, AAAI, Pensacola Beach, USA, pp. 284–287, 2014.

    Google Scholar 

  43. [43]

    X. W. Jia, K. Li, X. Y. Li, A. D. Zhang. A novel semi-supervised deep learning framework for affective state recognition on EEG signals. In Proceedings of IEEE International Conference on Bioinformatics and Bioengineering, Boca Raton, US, pp. 30–37, 2014. DOI:

    Google Scholar 

  44. [44]

    I. Sturm, S. Lapuschkin, W. Samek, K. R. Muller. Interpretable deep neural networks for single-trial EEG classification. Journal of Neuroscience Methods, vol. 274, pp. 141–145, 2016. DOI:

    Article  Google Scholar 

  45. [45]

    R. T. Schirrmeister, J. T. Springenberg, L. D. J. Fiederer, M. Glasstetter, K. Eggensperger, M. Tangermann, F. Hutter, W. Burgard, T. Ball. Deep learning with convolutional neural networks for EEG decoding and visualization. Human Brain Mapping, vol. 38, no. 11, pp. 5391–5420, 2017. DOI:

    Article  Google Scholar 

  46. [46]

    L. Q. Nie, M. Wang, L. M. Zhang, S. C. Yan, B. Zhang, T. S. Chua. Disease inference from health-related questions via sparse deep learning. IEEE Transactions on Knowledge and Data Engineering, vol. 27, no. 8, pp. 2107–2119, 2015. DOI:

    Article  Google Scholar 

  47. [47]

    L. Zhao, J. Z. Chen, F. Chen, W. Wang, C. T. Lu, N. Ramakrishnan. Simnest: Social media nested epidemic simulation via online semi-supervised deep learning. In Proceedings of IEEE International Conference on Data Mining, IEEE, Atlantic City, USA, pp. 639–648, 2015. DOI:

    Google Scholar 

  48. [48]

    B. Zou, V. Lampos, R. Gorton, I. J. Cox. On infectious intestinal disease surveillance using social media content. In Proceedings of the 6th International Conference on Digital Health Conference, ACM, Montreal, Canada, pp. 157–161, 2016. DOI:

    Chapter  Google Scholar 

  49. [49]

    A. Benton, M. Mitchell, D. Hovy. Multi-task learning for mental health using social media text. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, Valencia, Spain, pp. 1–11 2017.

    Google Scholar 

  50. [50]

    N. Hammerla, J. Fisher, P. Andras, L. Rochester, R. Walker, T. Ploetz. PD disease state assessment in naturalistic environments using deep learning. In Proceedings of the 29th AAAI Conference on Artificial Intelligence, Austin, USA, pp. 1742–1748, 2015.

    Google Scholar 

  51. [51]

    D. Ravi, C. Wong, B. Lo, G. Z. Yang. Deep learning for human activity recognition: A resource efficient implementation on low-power devices. In Proceedings of the 13th IEEE International Conference on Wearable and Implantable Body Sensor Networks, San Francisco, USA, pp. 71–76, 2016. DOI:

    Google Scholar 

  52. [52]

    A. Aliamiri, Y. C. Shen. Deep learning based atrial fibrillation detection using wearable photoplethysmography sensor. In Proceedings of IEEE EMBS International Conference on Biomedical & Health Informatics, Las Vegas, USA, pp. 442–445, 2018. DOI:

    Google Scholar 

  53. [53]

    Q. Zhang, X. X. Chen, Q. Y. Zhan, T. Yang, S. H. Xia. Respiration-based emotion recognition with deep learning. Computers in Industry, vol. 92–93, pp. 84–90, 2017. DOI:

    Article  Google Scholar 

  54. [54]

    Y. J. Chen, T. S. Chen, Z. W. Xu, N. H. Sun, O. Temam. DianNao family: Energy-efficient hardware accelerators for machine learning. Communications of the ACM, vol. 59, no. 11, pp. 105–112, 2016. DOI:

    Article  Google Scholar 

  55. [55]

    T. Unterthiner, A. Mayr, G. Klambauer, S. Hochreiter. Toxicity prediction using deep learning. [Online], Available:, 2015.

    Google Scholar 

  56. [56]

    J. S. Ma, R. P. Sheridan, A. Liaw, G. E. Dahl, V. Svetnik. Deep neural nets as a method for quantitative structureactivity relationships. Journal of Chemical Information and Modeling, vol. 55, no. 2, pp. 263–274, 2015. DOI:

    Article  Google Scholar 

  57. [57]

    T. Huynh, Y. L. He, A. Willis, S. Ruger. Adverse drug reaction classification with deep neural networks. In Proceedings of the 26th International Conference on Computational Linguistics, Osaka, Japan, pp. 877–887, 2016.

    Google Scholar 

  58. [58]

    K. Chaudhary, O. B. Poirion, L. Q. Lu, L. X. Garmire. Deep learning-based multiomics integration robustly predicts survival in liver cancer. Clinical Cancer Research, vol. 24, no. 6, pp. 1248–1259, 2017. DOI:

    Article  Google Scholar 

  59. [59]

    S. Yousefi, F. Amrollahi, M. Amgad, C. L. Dong, J. E. Lewis, C. Z. Song, D. A. Gutman, S. H. Halani, J. E. V. Vega, D. J. Brat, L. A. D. Cooper. Predicting clinical outcomes from large scale cancer genomic profiles with deep survival models. Scientific Reports, vol. 7, Article number 11707, 2017. DOI:

  60. [60]

    W. L. Chen, J. Wilson, S. Tyree, K. Weinberger, Y. X. Chen. Compressing neural networks with the hashing trick. In Proceedings of the 23nd International Conference on Machine Learning, Lille, France, pp. 2285–2294, 2015.

    Google Scholar 

  61. [61]

    W. L. Chen, J. Wilson, S. Tyree, K. Q. Weinberger, Y. X. Chen. Compressing convolutional neural networks in the frequency domain. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, San Francisco, USA, pp. 1475–1484, 2016. DOI:

    Chapter  Google Scholar 

Download references


This work was supported by US National Science Foundation (Nos. DBI-1356669 and III-1526012).

Author information



Corresponding author

Correspondence to Zhen-Jie Yao.

Additional information

Recommended by Associate Editor Chandrasekhar Kambhampati

Zhen-Jie Yao received the B. Sc. degree in instrument science from the Zhejiang University, China in 2007, and the Ph. D. degree in communication engineering from University of Chinese Academy of Sciences, China in 2012. In 2012, he was a researcher at China Mobile Research Institute, China. Currently, he is a researcher in Beijing Advanced Innovation Center for Future Internet Technology, Beijing University of Technology, China. He has published about 15 refereed journal and conference papers, and applied about 15 patents.

His research interests include machine learning, signal processing and their application in healthcare.

Jie Bi received the B. Sc. degree in biotechnology from Shanghai Jiao Tong University, China in 2013, and the M. Sc. degree in bioinformatics from the University of Chinese Academy of Sciences, China in 2016. Currently, he is a front-end engineer in Rhinotech Limited Liability Company, China. He won first prize of National Undergraduate Innovation Program (2012, China).

His research interests include machine learning methods for data visualization, Javascript, CSS3, HTML5.

Yi-Xin Chen received the Ph. D. degree in computer science from the University of Illinois at Urbana-Champaign (UIUC), USA in 2005. He is a professor of computer science and engineering at the Washington University in St. Louis, USA, which he joined in 2005. He received the Best Paper Award at the Idea, Development, Exploration, Assessment, Long-term Follow-up, Improving the Quality of Research in Surgery Conference (2016), Distinguished Paper Award at the American Medical Informatics Association Conference (2015), Best Student Paper Runner-up Award at the Association for Computing Machinery (ACM) Special Interest Group on Knowledge Discovery and Data Mining (SIGKDD) Conference (2014), Best Paper Award at the American Association for Artificial Intelligence Conference on Artificial Intelligence (2010), and the IEEE International Conference on Tools for AI (2005). He also received Best Paper Award nominations at IEEE International Conference on Data Mining (2013), IEEE Real-time and Embedded Technology and Applications Symposium (2012), and ACM SIGKDD Conference (2009). His work on planning has won First Prizes in the International Planning Competitions (2004 and 2006). He received an Early Career Principal Investigator Award from the Department of Energy (2006) and a Microsoft Research New Faculty Fellowship (2007). His research has been funded by National Science Foundation, National Institutes of Health, Department of Energy, Microsoft, Fujitsu, and Memorial Sloan-Kettering Cancer Center. He is an associate editor for ACM Transactions of Intelligent Systems and Technology, Annals of Mathematics and Artificial Intelligence, and Journal of Artificial Intelligence Research. He was an associate editor for IEEE Transactions on Knowledge and Data Engineering from 2008 to 2012.

His research interests include data mining, machine learning, artificial intelligence, and optimization.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yao, ZJ., Bi, J. & Chen, YX. Applying Deep Learning to Individual and Community Health Monitoring Data: A Survey. Int. J. Autom. Comput. 15, 643–655 (2018).

Download citation


  • Deep learning
  • healthcare
  • electronic health records (EHR)
  • neural networks
  • survey