Software for Small-scale Robotics: A Review

Abstract

In recent years, a large number of relatively advanced and often ready-to-use robotic hardware components and systems have been developed for small-scale use. As these tools are mature, there is now a shift towards advanced applications. These often require automation and demand reliability, efficiency and decisional autonomy. New software tools and algorithms for artificial intelligence (AI) and machine learning (ML) can help here. However, since there are many software-based control approaches for small-scale robotics, it is rather unclear how these can be integrated and which approach may be used as a starting point. Therefore, this paper attempts to shed light on existing approaches with their advantages and disadvantages compared to established requirements. For this purpose, a survey was conducted in the target group. The software categories presented include vendor-provided software, robotic software frameworks (RSF), scientific software and in-house developed software (IHDS). Typical representatives for each category are described in detail, including SmarAct precision tool commander, MathWorks Matlab and national instruments LabVIEW, as well as the robot operating system (ROS). The identified software categories and their representatives are rated for end user satisfaction based on functional and non-functional requirements, recommendations and learning curves. The paper concludes with a recommendation of ROS as a basis for future work.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    M. Sitti. Mobile Microrobotics, Cambridge, Massachusetts, London, UK: The MIT Press, 2017.

    Google Scholar 

  2. [2]

    J. J. Abbott, Z. Nagy, F. Beyeler, B. J. Nelson. Robotics in the small, Part I: microbotics. IEEE Robotics & Automation Magazine, vol. 14, no. 2, pp. 92–103, 2007. DOI: 10.1109/MRA.2007.380641.

    Article  Google Scholar 

  3. [3]

    B. J. Nelson, I. K. Kaliakatsos, J. J. Abbott. Microrobots for minimally invasive medicine. Annual Review of Biomedical Engineering, vol. 12, pp. 55–85, 2010. DOI: 10.1146/annurev-bioeng-010510-103409.

    Article  Google Scholar 

  4. [4]

    S. Fatikow. Automated Nanohandling by Microrobots, London, UK: Springer, 2008. DOI: 10.1007/978-1-84628-978-1.

    Google Scholar 

  5. [5]

    M. Sitti, H. Ceylan, W. Q. Hu, J. Giltinan, M. Turan, S. Yim, E. Diller. Biomedical applications of untethered mobile milli/microrobots. Proceedings of the IEEE, vol. 103, no. 2, pp. 205–224, 2015. DOI: 10.1109/JPROC.2014. 2385105.

    Article  Google Scholar 

  6. [6]

    M. Probst, C. Hürzeler, R. Borer, B. J. Nelson. A microassembly system for the flexible assembly of hybrid robotic mems devices. International Journal of Optomechatronics, vol. 3, no. 2, pp. 69–90, 2009. DOI: 10.1080/155996109 02894592.

    Article  Google Scholar 

  7. [7]

    B. Tamadazte, N. L. F. Piat, S. Dembélé. Robotic micromanipulation and microassembly using monoview and multiscale visual servoing. IEEE/ASME Transactions on Mechatronics, vol. 16, no. 2, pp. 277–287, 2011. DOI: 10.1109/TMECH.2010.2040900.

    Article  Google Scholar 

  8. [8]

    C. Diederichs, M. Mikczinski, T. Tiemerding. A flexible and compact high precision micro-factory for low volume production and lab-automation. In Proceedings of the 41st International Symposium on Robotics, IEEE, Munich, Germany, pp. 461–467, 2014.

    Google Scholar 

  9. [9]

    S. Zimmermann, T. Tiemerding, T. Li, W. R. Wang, Y. L. Wang, S. Fatikow. Automated mechanical characterization of 2-D materials using SEM based visual servoing. International Journal of Optomechatronics, vol. 7, no. 4, pp. 283–295, 2013. DOI: 10.1080/15599612.2013.879501.

    Article  Google Scholar 

  10. [10]

    B. J. Nelson, I. K. Kaliakatsos, J. J. Abbott. Microrobots for minimally invasive medicine. Annual Review of Biomedical Engineering, vol. 12, pp. 55–85, 2010. DOI: 10.1146/annurev-bioeng-010510-103409.

    Article  Google Scholar 

  11. [11]

    H. Ceylan, J. Giltinan, K. Kozielski, M. Sitti. Mobile microrobots for bioengineering applications. Lab on a Chip, vol. 17, no. 10, pp. 1705–1724, 2017. DOI: 10.1039/C7LC 00064B.

    Article  Google Scholar 

  12. [12]

    M. von Essen, J. Hirvonen, S. Kuikka, P. Kallio. Towards fully automated pick and place operations of individual natural fibers. In Proceedings of International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale, IEEE, Suzhou, China, pp. 21–26, 2013. DOI: 10.1109/3M-NANO.2013.6737419.

    Google Scholar 

  13. [13]

    D. Heriban, M. Gauthier. Robotic micro-assembly of microparts using a piezogripper. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Nice, France, pp. 404047, 2008. DOI: 10.1109/IROS.2008.4650932.

    Google Scholar 

  14. [14]

    Q. Shi, Z. Yang, Y. N. Guo, H. P. Wang, L. N. Sun, Q. Huang, T. Fukuda. A vision-based automated manipulation system for the pick-up of carbon nanotubes. IEEE/ASME Transactions on Mechatronics, vol. 22, no. 2, pp. 845–854, 2017. DOI: 10.1109/TMECH.2017.2649681.

    Article  Google Scholar 

  15. [15]

    Y. Sun, X. Y. Liu, Micro-and Nanomanipulation Tools. Weinhem, Germany: Wiley-VCH, 2015.

    Google Scholar 

  16. [16]

    S. van Petegem, A. Guitton, M. Dupraz, A. Bollhalder, K. Sofinowski, M. V. Upadhyay, H. van Swygenhoven. A miniaturized biaxial deformation rig for in situ mechanical testing. Experimental Mechanics, vol. 57, no. 4, pp. 569–580, 2017. DOI: 10.1007/s11340-016-0244-0.

    Article  Google Scholar 

  17. [17]

    M. Abadi, P. Barham, J. M. Chen, Z. F. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, X. Q. Zheng. Tensorflow: A system for large-scale machine learning. In Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation, USENIX Association, Savannah, USA, 2016.

    Google Scholar 

  18. [18]

    R. Lopez. Open NN: An open source neural networks C++ library [software], [Online], Available: https://doi.org/www.cimne.com/flood, May, 2014.

    Google Scholar 

  19. [19]

    D. Hart, B. Goertzel. OpenCog: A software framework for integrative artificial general intelligence. In Proceedings of the 1st Conference on Artificial General Intelligence, Memphis, USA, pp. 468–472, 2008.

    Google Scholar 

  20. [20]

    M. Tenorth, J. Winkler, D. Beßler, M. Beetz. Open-ease: a cloud-based knowledge service for autonomous learning. KI-Künstliche Intelligenz, vol. 29, no. 4, pp. 40 71, 2015. DOI: 10.1007/s13218-015-0364-1.

    Google Scholar 

  21. [21]

    T. Tiemerding, M. von Essen, C. Diederichs, P. Kallio, S. Fatikow. Integrating robotic software frameworks for convenient software component exchange in micro-and nanoscale applications. In Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics, IEEE, Besacon, France, pp. 978–983, 2014. DOI: 10.1109/AIM.2014.6878207.

    Google Scholar 

  22. [22]

    G. F. Bishop. Experiments with the middle response alternative in survey questions. Public Opinion Quarterly, vol. 51, no. 2, pp. 220–232, 1987. DOI: 10.1086/269030.

    Article  Google Scholar 

  23. [23]

    R. Garland. The mid-point on a rating scale: Is it desirable? Marketing Bulletin, vol. 2, pp. 66–70, 1991.

    Google Scholar 

  24. [24]

    G. W. Yun, C. W. Trumbo. Comparative response to a survey executed by post, e-mail, & web form. Journal of Computer-Mediated Communication, vol. 6, no. 1, 2000. DOI: 10.1111/j.1083-6101.2000.tb00112.x.

    Google Scholar 

  25. [25]

    C. Y. Shi, D. K. Luu, Q. M. Yang, J. Liu, J. Chen, C. H. Ru, S. R. Xie, J. Luo, J. Ge, Y. Sun. Recent advances in nanorobotic manipulation inside scanning electron microscopes. Microsystems & Nanoengineering, vol. 2, Article number 16024, 2016. DOI: 10.1038/micronano.2016.24.

    Google Scholar 

  26. [26]

    C. Cassier, A. Ferreira, S. Hirai. Combination of vision servoing techniques and VR-based simulation for semiautonomous microassembly workstation. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Washington DC, USA, pp. 1501–1506, 2002. DOI: 10.1109/ROBOT.2002.1014756.

    Google Scholar 

  27. [27]

    Q. Zhou, P. Korhonen, Q. Zhou, J. Laitinen, S. Sjövall. Automatic dextrous microhandling based on a 6-DOF microgripper. Journal of Micromechatronics, vol. 3, no. 3, pp. 359–387, 2006. DOI: 10.1163/156856306777924662.

    Article  Google Scholar 

  28. [28]

    M. Bartenwerfer, C. Diederichs, S. Fatikow. Automated robotic assembly for a micro-cartridge system inside the scanning electron microscope. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Hong Kong, China, pp. 5197–5202, 2014. DOI: 10.1109/ICRA.2014.6907622.

    Google Scholar 

  29. [29]

    C. Diederichs, M. Bartenwerfer, M. Mikczinski, S. Zimmermann, T. Tiemerding, C. Geldmann, H. Nguyen, C. Dahmen, S. Fatikow. A rapid automation framework for applications on the micro-and nanoscale. In Proceedings of Australasian Conference on Robotics and Automation, Sydney, Australia, 2013.

    Google Scholar 

  30. [30]

    M. von Essen, J. Hirvonen, S. Kuikka, P. Kallio. Robotic software frameworks and software component models in the development of automated handling of individual natural fibers. Journal of Micro-Bio Robotics, vol. 9, no. 1–2, pp. 29–45, 2014. DOI: 10.1007/s12213-014-0078-8.

    Google Scholar 

  31. [31]

    A. V. Kudryavtsev, G. J. Laurent, C. Clévy, B. Tamadazte, P. Lutz. Characterization of model-based visual tracking techniques for moems using a new block set for MATLAB/simulink. In Proceedings of International Symposium on Optomechatronic Technologies, IEEE, Seattle, USA, pp. 163–168, 2014. DOI: 10.1109/ISOT.2014.47.

    Google Scholar 

  32. [32]

    D. Brugali. Software Engineering for Experimental Robotics, Berlin Heidelberg, Germany: Springer, 2007. DOI: 10.1007/978-3-540-68951-5.

    Google Scholar 

  33. [33]

    M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, A. Ng. Ros: an open-source robot operating system. In Proceedings of ICRA Workshop on Open Source Software, Kobe, Japan, 2009.

    Google Scholar 

  34. [34]

    J. Jackson. Microsoft robotics studio: a technical introduction. IEEE Robotics & Automation Magazine, vol. 14, no. 4, pp. 82–87, 2007. DOI: 10.1109/M-RA.2007.905745.

    Article  Google Scholar 

  35. [35]

    P. I. Corke. A robotics toolbox for Matlab. IEEE Robotics & Automation Magazine, vol. 3, no. 1, pp. 24–32, 1996. DOI: 10.1109/100.486658.

    Article  Google Scholar 

  36. [36]

    N. Quijano, K. Passino, S. Jogi. A tutorial introduction to control systems development and implementation with dSPACE, Tutorial, 2002.

    Google Scholar 

  37. [37]

    B. P. Gerkey, R. T. Vaughan, A. Howard. The Player/stage project: tools for multi-robot and distributed sensor systems. In Proceedings of the 11th International Conference on Advanced Robotics, Coimbra, Portugal, pp. 317–323, 2003.

    Google Scholar 

  38. [38]

    G. Bradski. The Opencv library. Dr. Dobb’s Journal of Software Tools, 2000.

    Google Scholar 

  39. [39]

    H. R. Kam, S. H. Lee, T. Park, C. H. Kim. RViz: A toolkit for real domain data visualization. Telecommunication Systems, vol. 60, no. 2, pp. 337–345, 2015. Doi: 10.1007/s11235-015-0034-5.

    Article  Google Scholar 

  40. [40]

    E. Rohmer, S. P. N. Singh, M. Freese. V-REP: A versatile and scalable robot simulation framework. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Tokyo, Japan, pp. 1321–1326, 2013. Doi: 10.1109/IROS.2013.6696520.

    Google Scholar 

  41. [41]

    É. Marchand, F. Spindler, F. Chaumette. VISP for visual servoing: a generic software platform with a wide class of robot control skills. IEEE Robotics & Automation Magazine, vol. 12, no. 4, pp. 40–52, 2005. DOI: 10.1109/MRA.2005.1577023.

    Article  Google Scholar 

  42. [42]

    É. Marchand. VISP: a software environment for eye-inhand visual servoing. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Detroit, USA, pp. 3224–3229, 1999. Doi: 10. 1109 /ROB O T. 1999.774089.

    Google Scholar 

  43. [43]

    H. Bruyninckx. Open robot control software: The orocos project. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Seoul, South Korea, pp. 2523–2528, 2001. Doi: 10.1109/ROBOT.2001.933002.

    Google Scholar 

  44. [44]

    S. Joyeux, J. Albiez. Robot development: From components to systems. In Proceedings of the 6th National Conference on Control Architectures of Robots, Grenoble, France, 2011.

    Google Scholar 

  45. [45]

    T. Tasner, D. Lovrec, F. Tasner, J. Edler. Comparison of LabVIEW and MATLAB for scientific research. In Proceedings of Annals of the Faculty of Engineering Hunedoara, Hunedoara, Romania, pp. 389–394, 2012.

    Google Scholar 

  46. [46]

    P. Elfert, T. Tiemerding, S. Fatikow. Integration of different hardware interfacing protocols into a robotic software framework. In Proceedings of International Conference on Manipulation, Automation and Robotics at Small Scales, IEEE, Paris, France, 2016. DOI: 10.1109/MARSS.2016. 7561723.

    Google Scholar 

  47. [47]

    J. Travis, J. Kring, LabVIEW for Everyone: Graphical Programming Made Easy and Fun, 3rd ed., Upper Saddle River, USA: Prentice Hall, 2006.

    Google Scholar 

  48. [48]

    V. Sarioia. Droplet self-alignment: high-precision robotic microassembly and self-assembly; Pisaran itsekohdistus: Tarkkuusmikrokokoonpano hyödyntäen robotiikkaa ja itsekokoonpanoa, 2012, [Online], Available: https://doi.org/urn.fi/URN:ISBN:978-952-60-4641-9, 2012.

    Google Scholar 

  49. [49]

    D. Gendreau, M. Gauthier, D. Hériban, P. Lutz. Modular architecture of the microfactories for automatic micro-assembly. Robotics and Computer-integrated Manufacturing, vol. 26, no.4, pp. 354–360, 2010. Doi: 10.1016/j.rcim.2009.11.013.

    Google Scholar 

  50. [50]

    M. Gauthier, D. Heriban, D. Gendreau, S. Regnier, N. Chaillet, P. Lutz. Micro-factory for submerged assembly: interests and architectures. In Proceedings of the 5th International Workshop on MicroFactories, Besancon, France, 2006.

    Google Scholar 

  51. [51]

    R. Cope. Seven reasons why closed source is better than open source, or so it seems, 2013, [Online], Available: https://doi.org/opensource.com/business/13/10/seven-reasonsclosed-better-than-open-source, October 31, 2013.

    Google Scholar 

  52. [52]

    N. Marturi. Vision and Visual Servoing for Nanomanipulation and Nanocharacterization in Scanning Electron Microscope, Ph. D. dissertation, University of Frachche-Comte, France, 2013.

    Google Scholar 

  53. [53]

    H. W. Jung, S. G. Kim, C. S. Chung. Measuring software product quality: A survey of ISO/IEC 9126. IEEE Software, vol. 21, no. 5, pp. 88–92, 2004. Doi: 10.1109/MS.2004. 1331309.

    Article  Google Scholar 

  54. [54]

    Software engineering-Product quality, Part 1: Quality model, ISO/IEC 9126-1, 2001.

  55. [55]

    Systems and software engineering-systems and software quality requirements and evaluation (SQuaRE)-system and software quality models, ISO25010-2011, 2011. (in Chinese)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tobias Tiemerding.

Additional information

Recommended by Guest Editor Jun-Zhi Yu

Tobias Tiemerding received the B. Sc. and M. Sc. degrees in computer science and embedded systems and microrobotics from University of Oldenburg, Germany in 2010 and 2012, respectively. Currently, he is a research associate in Department of Computing Science, Division Microrobotics and Control Engineering (AMiR), University of Oldenburg, Germany. He has published 52 conference and journal papers and a book chapter.

His research interests include microrobotics, automation, soft-ware-based control and high-speed image processing.

Sergej Fatikow received the Ph. D. degree in computer science and electrical engineering at Ufa Aviation Technical University, Russia in 1988. He is a full professor in Department of Computing Science and head of the Division Microrobotics and Control Engineering (AMiR) at University of Oldenburg, Germany. He has published about 150 book chapters and journal papers and about 300 conference papers. He is a Member of IEEE, founding chair of the International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), founding chair of the International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO) and Europe-chair of IEEE-RAS Technical Committee on Micro/Nano Robotics and Automation.

His research interests include micro/nanorobotics, industrial robotics and automation at nanoscale, nanohandling inside SEM, AFM-based nanohandling, sensor feedback at nanoscale, and robot control.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tiemerding, T., Fatikow, S. Software for Small-scale Robotics: A Review. Int. J. Autom. Comput. 15, 515–524 (2018). https://doi.org/10.1007/s11633-018-1130-2

Download citation

Keywords

  • Robotic control
  • software engineering
  • micro/nano robotics
  • artificial intelligence (AI)
  • machine learning (ML)
  • open source.