Advertisement

Precision Work-piece Detection and Measurement Combining Top-down and Bottom-up Saliency

  • Jia Sun
  • Peng WangEmail author
  • Yong-Kang Luo
  • Gao-Ming Hao
  • Hong Qiao
Research Article

Abstract

In this paper, a fast and accurate work-piece detection and measurement algorithm is proposed based on top-down feature extraction and bottom-up saliency estimation. Firstly, a top-down feature extraction method based on the prior knowledge of workpieces is presented, in which the contour of a work-piece is chosen as the major feature and the corresponding template of the edges is created. Secondly, a bottom-up salient region estimation algorithm is proposed, where the image boundaries are labelled as background queries, and the salient region can be detected by computing contrast against image boundary. Finally, the calibration method for vision system with telecentric lens is discussed, and the dimensions of the work-pieces are measured. In addition, strategies such as image pyramids and a stopping criterion are adopted to speed-up the algorithm. An automatic system embedded with the proposed detection and measurement algorithm combining top-down and bottom-up saliency (DM-TBS) is designed to pick out defective work-pieces without any manual auxiliary. Experiments and results demonstrate the effectiveness of the proposed method.

Keywords

Work-pieces detection salient region estimation top-down and bottom-up saliency (TBS) calibration visual measurement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (Nos. 61379097, 91748131, 61771471, U1613213 and 61627808), National Key Research and Development Plan of China (No. 2017YFB1300202), and Youth Innovation Promotion Association Chinese Academy of Sciences (CAS) (No. 2015112).

References

  1. [1]
    E. N. Malamas, E. G. M. Petrakis, M. Zervakis, L. Petit, J. D. Legat. A survey on industrial vision systems, applications and tools. Image and Vision Computing, vol. 21, no. 2, pp. 171–188, 2003. DOI: 10.1016/S0262-8856(02)00152-X.CrossRefGoogle Scholar
  2. [2]
    Q. Y. Gu, I. Ishii. Review of some advances and applications in real-time high-speed vision: Our views and experiences. International Journal of Automation and Computing, vol. 13, no. 4, pp. 305–318, 2016. DOI: 10.1007/s11633-016-1024-0.CrossRefGoogle Scholar
  3. [3]
    N. Mostofi, F. Samadzadegan, S. Roohy, M. Nozari. Using vision metrology system for quality control in automotive industries. International Society for Photogrammetry and Remote Sensing, vol. XXXIX-B5, pp. 33–37, 2012. DOI: 10.5194/isprsarchives-XXXIX-B5-33-2012.Google Scholar
  4. [4]
    Y. F. Qu, Z. B. Pu, G. D. Liu. Combination of a vision system and a coordinate measuring machine for rapid coordinate metrology. In Proceedings of the SPIE 4927, Optical Design and Testing, SPIE, Shanghai, China, pp. 581–585, 2002. DOI: 10.1117/12.471672.Google Scholar
  5. [5]
    V. Carbone, M. Carocci, E. Savio, G. Sansoni, L. De Chiffre. Combination of a vision system and a coordinate measuring machine for the reverse engineering of freeform surfaces. The International Journal of Advanced Manufacturing Technology, vol.17, no. 4, pp. 263–271, 2001. DOI: 10.1007/s001700170179.CrossRefGoogle Scholar
  6. [6]
    M. Rak, A. Wozniak. Systematic errors of measurements on a measuring arm equipped with a laser scanner on the results of optical measurements. Advanced Mechatronics Solutions, R. Jablonski, T. Brezina, Eds., Cham, Germany: Springer, pp. 355–360, 2016. DOI: 10.1007/978-3-319-23923-1_54.CrossRefGoogle Scholar
  7. [7]
    S. Martinez, E. Cuesta, J. Barreiro, B. Alvarez. Analysis of laser scanning and strategies for dimensional and geometrical control. The International Journal of Advanced Manufacturing Technology, vol.46, no. 5–8, pp. 621–629, 2010. DOI: 10.1007/s00170-009-2106-8.CrossRefGoogle Scholar
  8. [8]
    Y. Xie, X. D. Yang, Z. Liu, S. N. Ren, K. Chen. Method for visual localization of oil and gas wellhead based on distance function of projected features. International Journal of Automation and Computing, vol. 14, no. 2, pp. 147–158, 2017. DOI: 10.1007/s11633-017-1063-1.CrossRefGoogle Scholar
  9. [9]
    T. H. Sun, C. C. Tseng, M. S. Chen. Electric contacts inspection using machine vision. Image and Vision Computing, vol.28, no. 6, pp. 890–901, 2010. DOI: 10.1016/j.imavis.2009.11.006.CrossRefGoogle Scholar
  10. [10]
    K. T. Maddala, R. H. Moss, W. V. Stoecker, J. R. Hagerty, J. G. Cole, N. K. Mishra, R. J. Stanley. Adaptable ring for vision-based measurements and shape analysis. IEEE Transactions on Instrumentation and Measurement, vol. 66, no. 4, pp. 746–756, 2017. DOI: 10.1109/TIM.2017.2650738.CrossRefGoogle Scholar
  11. [11]
    C. X. Jian, J. Gao, Y. H. Ao. Automatic surface defect detection for mobile phone screen glass based on machine vision. Applied Soft Computing, vol.52, pp. 348–358, 2017. DOI: 10.1016/j.asoc.2016.10.030.Google Scholar
  12. [12]
    S. Ghidoni, M. Finotto, E. Menegatti. Automatic color inspection for colored wires in electric cables. IEEE Transactions on Automation Science and Engineering, vol. 12, no. 2, pp. 596–607, 2015. DOI: 10.1109/TASE.2014.2360233.CrossRefGoogle Scholar
  13. [13]
    M. Ulrich, C. Steger, A. Baumgartner. Real-time object recognition using a modified generalized Hough transform. Pattern Recognition, vol.36, no. 11, pp. 2557–2570, 2003. DOI: 10.1016/S0031-3203(03)00169-9.CrossRefzbMATHGoogle Scholar
  14. [14]
    C. Steger. Similarity measures for occlusion, clutter, and illumination invariant object recognition. Joint Pattern Recognition Symposium, B. Radig, S. Florczyk, Eds., Berlin Heidelberg, Germany: Springer, pp. 148–154, 2001. DOI: 10.1007/3-540-45404-7_20.CrossRefGoogle Scholar
  15. [15]
    A. Uchida, Y. Ito, K. Nakano. Fast and accurate template matching using pixel rearrangement on the GPU. In Proceedings of the 2nd International Conference on Networking and Computing, IEEE, Osaka, Japan, pp. 153–159, 2011. DOI: 10.1109/ICNC.2011.30.Google Scholar
  16. [16]
    B. K. Choudhary, N. K. Sinha, P. Shanker. Pyramid method in image processing. Journal of Information Systems and Communication, vol. 3, no. 1, pp. 269–273, 2012Google Scholar
  17. [17]
    M. Gharavi-Alkhansari. A fast globally optimal algorithm for template matching using low-resolution pruning. IEEE Transactions on Image Processing, vol. 10, no. 4, pp. 526–533, 2001. DOI: 10.1109/83.913587.CrossRefzbMATHGoogle Scholar
  18. [18]
    N. A. Jalil, A. S. H. Basari, S. Salam, N. K. Ibrahim, M. A. Norasikin. The utilization of template matching method for license plate recognition: A case study in Malaysia. Advanced Computer and Communication Engineering Technology, Cham, Germany: Springer, pp. 1081–1090, 2015. DOI: 10.1007/978-3-319-07674-4.100.Google Scholar
  19. [19]
    L. Zhang, M. H. Tong, T. K. Marks, H. Shan, G. W. Cottrell. SUN: A Bayesian framework for saliency using natural statistics. Journal of Vision, vol. 8, no. 7, Article number 32, 2008. DOI: 10.1167/8.7.32.Google Scholar
  20. [20]
    Y. K. Luo, P. Wang, W. Y. Li, X. P. Shang, H. Qiao. Salient object detection based on boundary contrast with regularized manifold ranking. In Proceedings of the 12th World Congress on Intelligent Control and Automation, IEEE, Guilin, China, pp. 2074–2079, 2016. DOI: 10.1109/WCICA.2016.7578649.Google Scholar
  21. [21]
    M. M. Cheng, N. J. Mitra, X. L. Huang, P. H. S. Torr, and S. M. Hu. Global contrast based salient region detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.37, no. 3, pp. 569–582, 2015. DOI: 10.1109/TPAMI.2014.2345401.CrossRefGoogle Scholar
  22. [22]
    P. Dollár, C. L. Zitnick. Fast edge detection using structured forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 37, no. 8, pp. 1558–1570, 2015. DOI: 10.1109/TPAMI.2014.2377715.CrossRefGoogle Scholar
  23. [23]
    J. B. Wu, Z. P. Yin, Y. L. Xiong. The fast multilevel fuzzy edge detection of blurry images. IEEE Signal Processing Letters, vol. 14, no. 5, pp. 344–347, 2007. DOI: 10.1109/LSP.2006.888087.CrossRefGoogle Scholar
  24. [24]
    S. C. Huang, W. C. Chen. A new hardware-efficient algorithm and reconfigurable architecture for image contrast enhancement. IEEE Transactions on Image Processing, vol.23, no. 10, pp. 4426–4437, 2014. DOI: 10.1109/TIP.2014.2348869.MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    C. Steger. Analytical and empirical performance evaluation of sub-pixel line and edge detection. In Proceedings of Empirical Evaluation Methods in Computer Vision, IEEE, Los Alamitos, USA, pp. 1–23, 1998.Google Scholar
  26. [26]
    R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, S. Susstrunk. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 11, pp. 2274–2282, 2012. DOI: 10.1109/TPAMI.2012.120.CrossRefGoogle Scholar

Copyright information

© Institute of Automation, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of AutomationChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations