An Overview of Contour Detection Approaches

Abstract

Object contour plays an important role in fields such as semantic segmentation and image classification. However, the extraction of contour is a difficult task, especially when the contour is incomplete or unclosed. In this paper, the existing contour detection approaches are reviewed and roughly divided into three categories: pixel-based, edge-based, and region-based. In addition, since the traditional contour detection approaches have achieved a high degree of sophistication, the deep convolutional neural networks (DCNNs) have good performance in image recognition, therefore, the DCNNs based contour detection approaches are also covered in this paper. Moreover, the future development of contour detection is analyzed and predicted.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    G. Papari, N. Petkov. Edge and line oriented contour detection: State of the art. Image and Vision Computing, vol. 29, no.2–3, pp. 79–103, 2011. DOI: https://doi.org/10.1016/j.imavis.2010.08.009.

    Google Scholar 

  2. [2]

    Y. S. Ming, H. D. Li, X. M. He. Contour completionwithout region segmentation. IEEE Transactions on Image Processing, vol. 25, no. 9, pp. 3597–3611, 2016. DOI: https://doi.org/10.1109/TIP.2016.2564646.

    MathSciNet  Google Scholar 

  3. [3]

    D. Ziou, S. Tabbone. Edge detection techniques-an overview. Pattern Recognition & Image Analysis, vol. 8, no.4, pp. 537–559, 1998.

    Google Scholar 

  4. [4]

    D. R. Martin, C. C. Fowlkes, J. Malik. Learning to detectnatural image boundaries using local brightness, color,and texture cues. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 5, pp. 530–549, 2004. DOI: https://doi.org/10.1109/TPAMI.2004.1273918.

    Google Scholar 

  5. [5]

    P. Arbelaez, M. Maire, C. Fowlkes, J. Malik. Contour detection and hierarchical image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33, no. 5, pp. 898–916, 2011. DOI: https://doi.org/10.1109/TPAMI.2010.161.

    Google Scholar 

  6. [6]

    Y. LeCun, Y. Bengio, G. Hinton. Deep learning. Nature, vol. 521, no. 7553, pp. 436–444, 2015. DOI: https://doi.org/10.1038/nature14539.

    Google Scholar 

  7. [7]

    J. M. Yang, B. Price, S. Cohen, H. Lee, M. H. Yang. Object contour detection with a fully convolutional encoder-decoder network. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Las Vegas, USA, pp. 193–202, 2016. DOI: https://doi.org/10.1038/nature1453910.1109/CVPR.2016.28.

    Google Scholar 

  8. [8]

    M. S. Nixon, A. S. Aguado..Feature Extraction & Image Processing for Computer Vision, 3rd ed., Amsterdam, Holland: Elsevier, 2012.

    Google Scholar 

  9. [9]

    J. Canny. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-8, no. 6, pp. 679–698, 1986. DOI: https://doi.org/10.1038/nature1453910.1109/TPAMI.1986.4767851.

    Google Scholar 

  10. [10]

    X. Wang. Laplacian operator-based edge detectors. IEEETransactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 5, pp. 886–890, 2007. DOI: https://doi.org/10.1109/TPAMI.2007.1027.

    Google Scholar 

  11. [11]

    P. Perona, J. Malik. Detecting and localizing edges composed of steps, peaks and roofs. In Proceedings of the 3rdInternational Conference on Computer Vision, IEEE,Osaka, Japan, pp. 52–57, 1990. DOI: https://doi.org/10.1109/ICCV.1990.139492.

    Google Scholar 

  12. [12]

    Y. Lu, R. C. Jain. Reasoning about edges in scale space. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14, no. 4, pp. 450–468, 1992. DOI: https://doi.org/10.1109/34.126806.

    Google Scholar 

  13. [13]

    P. Perona, J. Malik. Scale-space and edge detection usinganisotropic diffusion. IEEE Transactions on PatternAnalysis and Machine Intelligence, vol. 12, no. 7, pp. 629–639, 1990. DOI: https://doi.org/10.1109/34.56205.

    Google Scholar 

  14. [14]

    J. Malik, S. Belongile, T. Leung, J. B. Shi. Contour andtexture analysis for image segmentation. InternationalJournal of Computer Vision, vol. 43, no. 1, pp. 7–27, 2001. DOI: https://doi.org/10.1023/A:1011174803800.

    Google Scholar 

  15. [15]

    N. Petkov, M. A. Westenberg. Suppression of contourperception by band-limited noise and its relation to non-classical receptive field inhibition. Biological Cybernetics, vol. 88, no. 3, pp. 236–246, 2003. DOI: https://doi.org/10.1007/s00422-002-0378-2

    MATH  Google Scholar 

  16. [16]

    D. J. Field, A. Hayes, R. F. Hess. Contour integration bythe human visual system: Evidence for a local “association field”. Vision Research, vol. 33, no. 2, pp. 173–193, 1993. DOI: https://doi.org/10.1016/0042-6989(93)90156-Q.

    Google Scholar 

  17. [17]

    D. H. Hubel, T. N. Wiesel. Receptive fields and functional architecture of monkey striate cortex. The Journal ofPhysiology, vol. 195, no. 1, pp. 215–243, 1968. DOI: https://doi.org/10.1113/jphysiol.1968.sp008455.

    Google Scholar 

  18. [18]

    H. E. Jones, K. L. Grieve, W. Wang, A. M. Sillito. Surround suppression in primate V1. Journal of Neurophysiology, vol. 86, no. 4, pp. 2011–2028, 2001. DOI: https://doi.org/10.1152/jn.2001.86.4.2011.

    Google Scholar 

  19. [19]

    P. Series, J. Lorenceau, Y. Fregnac. The “silent” surround of V1 receptive fields: Theory and experiments. Journal of Physiology-Paris, vol. 97, no. 4–6, pp. 453–474, 2003. DOI: https://doi.org/10.1016/j.jphysparis.2004.01.023.

    Google Scholar 

  20. [20]

    J. G. Daugman. Uncertainty relation for resolution inspace, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. Journal of the Optical Society of America A, vol. 2, no. 7, pp. 1160–1169, 1985. DOI: https://doi.org/10.1364/JOSAA.2.001160.

    Google Scholar 

  21. [21]

    J. P. Jones, L. A. Palmer. An evaluation of the two-dimensional Gabor filter model of simple receptive fields incat striate cortex. Journal of Neurophysiology, vol. 58, no. 6, pp. 1233–1258, 1987. DOI: https://doi.org/10.1152/jn.1987.58.6.1233.

    Google Scholar 

  22. [22]

    W. Chan, G. Coghill. Text analysis using local energy.Pattern Recognition, vol. 34, no. 12, pp. 2523–2532, 2001. DOI: https://doi.org/10.1016/S0031-3203(00)00155-2.

    MATH  Google Scholar 

  23. [23]

    R. C. Zhao, M. Wu, X. Y. Liu, B. J. Zou, F. F. Li. Orientation histogram-based center-surround interaction: Anintegration approach for contour detection. Neural Computation, vol. 29, no. 1, pp. 171–193, 2017. DOI: https://doi.org/10.1162/NECO_a_00911.

    Google Scholar 

  24. [24]

    M. P. Sceniak, D. L. Ringach, M. J. Hawken, R. Shapley. Contrast’s effect on spatial summation by macaque V1neurons. Nature Neuroscience, vol. 2, no. 8, pp. 733–739, 1999. DOI: https://doi.org/10.1038/11197.

    Google Scholar 

  25. [25]

    M. P. Sceniak, M. J. Hawken, R. Shapley. Visual spatial characterization of macaque V1 neurons. Journal ofNeurophysiology, vol. 85, no. 5, pp. 1873–1887, 2001. DOI: https://doi.org/10.1152/jn.2001.85.5.1873.

    Google Scholar 

  26. [26]

    J. R. Cavanaugh, W. Bair, J. A. Movshon. Nature and interaction of signals from the receptive field center andsurround in macaque V1 neurons. Journal of Neurophysiology, vol. 88, no. 5, pp. 2530–2546, 2002. DOI: https://doi.org/10.1152/jn.00692.2001.

    Google Scholar 

  27. [27]

    C. Grigorescu, N. Petkov, M. A. Westenberg. Contour detection based on nonclassical receptive field inhibition. IEEE Transactions on Image Processing, vol. 12, no. 7, pp. 729–739, 2003. DOI: https://doi.org/10.1109/TIP.2003.814250.

    Google Scholar 

  28. [28]

    C. Grigorescu, N. Petkov, M. A. Westenberg. Contour and boundary detection improved by surround suppression of texture edges. Image and Vision Computing, vol. 22, no. 8, pp. 609–622, 2004. DOI: https://doi.org/10.1016/j.imavis.2003.12.004.

    Google Scholar 

  29. [29]

    N. Petkov, M. A. Westenberg. Suppression of contourperception by band-limited noise and its relation to non-classical receptive field inhibition. Biological Cybernetics, vol. 88, no. 3, pp. 236–246, 2003. DOI: https://doi.org/10.1007/s00422-002-0378-2.

    MATH  Google Scholar 

  30. [30]

    G. Papari, N. Petkov. An improved model for surround suppression by steerable filters and multilevel inhibition with application to contour detection. Pattern Recognition, vol. 44, no. 9, pp. 1999–2007, 2011. DOI: https://doi.org/10.1016/j.patcog.2010.08.013.

    Google Scholar 

  31. [31]

    G. Papari, P. Campisi, N. Petkov, A. Neri. A biologically motivated multiresolution approach to contour detection.EURASIP Journal on Advances in Signal Processing, vol. 2007, Article number 071828, 2007. DOI: https://doi.org/10.1155/2007/71828.

  32. [32]

    M. Ursino, G. E. La Cara. A model of contextual interactions and contour detection in primary visual cortex. Neural Networks, vol. 17, no.5–6, pp. 719–735, 2004. DOI: https://doi.org/10.1016/j.neunet.2004.03.007.

    MATH  Google Scholar 

  33. [33]

    L. Long, Y. J. Li. Contour detection based on the property of orientation selective inhibition of non-classical receptive field. In Proceedings of IEEE Conference on Cybernetics and Intelligent Systems, IEEE, Chengdu, China, pp. 1002–1006, 2008. DOI: https://doi.org/10.1109/ICCIS.2008.4670920.

    Google Scholar 

  34. [34]

    C. Zeng, Y. J. Li, C. Y. Li. Center-surround interaction with adaptive inhibition: A computational model for contour detection. NeuroImage, vol. 55, no. 1, pp. 49–66, 2011. DOI: https://doi.org/10.1016/j.neuroimage.2010.11.067.

    Google Scholar 

  35. [35]

    K. F. Yang, S. B. Gao, C. F. Guo, C. Y. Li, Y. J. Li. Boundary detection using double-opponency and spatial sparseness constraint. IEEE Transactions on Image Processing, vol. 24, no. 8, pp. 2565–2578, 2015. DOI: https://doi.org/10.1109/TIP.2015.2425538.

    MathSciNet  Google Scholar 

  36. [36]

    G. Azzopardi, N. Petkov. A CORF computational modelof a simple cell that relies on LGN input outperforms theGabor function model. Biological Cybernetics, vol. 106, no. 3, pp. 177–189, 2012. DOI: https://doi.org/10.1007/s00422-012-0486-6.

    Google Scholar 

  37. [37]

    G. Azzopardi, A. Rodriguez-Sanchez, J. Piater, N. Petkov. A push-pull CORF model of a simple cell withantiphase inhibition improves SNR and contour detection. PLoS One, vol. 9, no. 7, Article number e98424, 2014. DOI: https://doi.org/10.1371/journal.pone.0098424.

    Google Scholar 

  38. [38]

    K. F. Yang, C. Y. Li, Y. J. Li. Multifeature-based surround inhibition improves contour detection in naturalimages. IEEE Transactions on Image Processing, vol. 23, no. 12, pp. 5020–5032, 2014. DOI: https://doi.org/10.1109/TIP.2014.2361210.

    MathSciNet  MATH  Google Scholar 

  39. [39]

    U. Polat, K. Mizobe, M. W. Pettet, T. Kasamatsu, A. M. Norcia. Collinear stimuli regulate visual responses depending on cell’s contrast threshold. Nature, vol. 391, no. 6667, pp. 580–584, 1998. DOI: https://doi.org/10.1038/35372.

    Google Scholar 

  40. [40]

    S. C. Yen, L. H. Finkel. Extraction of perceptually salient contours by striate cortical networks. Vision Research, vol. 38, no. 5, pp. 719–741, 1998. DOI: https://doi.org/10.1016/S0042-6989(97)00197-1.

    Google Scholar 

  41. [41]

    T. Hansen, H. Neumann. A recurrent model of contour-integration in primary visual cortex. Journal of Vision, vol. 8, no. 8, 2008. DOI: https://doi.org/10.1167/8.8.8.

    Google Scholar 

  42. [42]

    Q. L. Tang, N. Sang, T. X. Zhang. Contour detection-based on contextual influences. Image and Vision Computing, vol. 25, no. 8, pp. 1282–1290, 2007. DOI: https://doi.org/10.1016/j.imavis.2006.08.007.

    Google Scholar 

  43. [43]

    Q. L. Tang, N. Sang, T. X. Zhang. Extraction of salient-contours from cluttered scenes. Pattern Recognition, vol. 40, no. 11, pp. 3100–3109, 2007. DOI: https://doi.org/10.1016/j.pat-cog.2007.02.009.

    MATH  Google Scholar 

  44. [44]

    K. F. Yang. Computational models and applications ofthe early stages of biological visual system, Ph. D. dissertation, University of Electronic and Technology of China,China, 2016.(in Chinese)

    Google Scholar 

  45. [45]

    N. Widynski, M. Mignotte. A particle filter framework forcontour detection. In Proceedings of the 12th EuropeanConference on Computer Vision, Springer, Florence, Italy, pp. 780–793, 2012. DOI: https://doi.org/10.1007/978-3-642-33718-5_56.

    Google Scholar 

  46. [46]

    N. Widynski, M. Mignotte. A MultiScale particle filter-framework for contour detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 10, pp. 1922–1935, 2014. DOI: https://doi.org/10.1109/TPAMI.2014.2307856.

    Google Scholar 

  47. [47]

    X. F. Ren. Multi-scale improves boundary detection in natural images. In Proceedings of the 10th European Conference on Computer Vision, Springer, Marseille, France, pp. 533–545, 2008. DOI: https://doi.org/10.1007/978-3-540-88690-7_40.

    Google Scholar 

  48. [48]

    X. F. Ren, L. F. Bo. Discriminatively trained sparse codegradients for contour detection. In Proceedings of the25th International Conference on Neural InformationProcessing Systems, Curran Associates Inc., Lake Tahoe, Spain, pp. 584–592, 2012.

    Google Scholar 

  49. [49]

    P. Dollar, Z. W. Tu, S. Belongie. Supervised learning of edges and object boundaries. In Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE, New York, USA, pp. 1964–1971, 2006. DOI: https://doi.org/10.1109/CVPR.2006.298.

    Google Scholar 

  50. [50]

    J. B. Shi, J. Malik. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 8, pp. 888–905, 2000. DOI: https://doi.org/10.1109/34.868688.

    Google Scholar 

  51. [51]

    M. Maire, P. Arbelaez, C. Fowlkes, J. Malik. Using contours to detect and localize junctions in natural images. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Anchorage, USA, 2008. DOI: https://doi.org/10.1109/CVPR.2008.4587420.

    Google Scholar 

  52. [52]

    P. Arbelaez, J. Pont-Tuset, J. Barron, F. Marques, J. Malik. Multiscale combinatorial grouping. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Columbus, USA, pp. 328–335, 2014. DOI: https://doi.org/10.1109/CVPR.2014.49.

    Google Scholar 

  53. [53]

    J. Pont-Tuse, P. Arbelaez, J. T. Barron, F. Marques, J. Malik. Multiscale combinatorial grouping for image segmentation and object proposal generation. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 1, pp. 128–140, 2017. DOI: https://doi.org/10.1109/TPAMI.2016.2537320.

    Google Scholar 

  54. [54]

    S. Lavania, P. S. Matey. Leaf recognition using contour-based edge detection and SIFT algorithm. In Proceedngs of IEEE International Conference on Computational Intelligence and Computing Research, Coimbatore, India, pp. 1–4, 2014. DOI: https://doi.org/10.1109/CVPR.2010.5539956.

    Google Scholar 

  55. [55]

    Y. Lu, R. C. Jain. Behavior of edges in scale space. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11, no. 4, pp. 337–356, 1989. DOI: https://doi.org/10.1109/34.19032.

    Google Scholar 

  56. [56]

    T. Lindeberg. Edge detection and ridge detection with automatic scale selection. International Journal of Computer Vision, vol. 30, no. 2, pp. 117–156, 1998. DOI: https://doi.org/10.1023/A:1008097225773.

    Google Scholar 

  57. [57]

    S. Wang, T. Kubota, J. M. Siskind, J. Wang. Salient-closed boundary extraction with ratio contour. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 4, pp. 546–561, 2005. DOI: https://doi.org/10.1109/TPAMI.2005.84

    Google Scholar 

  58. [58]

    I. J. Cox, J. M. Rehg, S. Hingorani. A Bayesian multiple-hypothesis approach to edge grouping and contour segmentation. International Journal of Computer Vision, vol. 11, no. 1, pp. 5–24, 1993. DOI: https://doi.org/10.1007/BF01420590.

    Google Scholar 

  59. [59]

    A. Amir, M. Lindenbaum. A generic grouping algorithm and its quantitative analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no. 2, pp. 168–185, 1998. DOI: https://doi.org/10.1109/34.659934.

    Google Scholar 

  60. [60]

    S. Mahamud, L. R. Williams, K. K. Thornber. Segmentation of multiple salient closed contours from real images. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 4, pp. 433–444, 2003. DOI: https://doi.org/10.1109/TPAMI.2003.1190570.

    Google Scholar 

  61. [61]

    J. H. Elder, S. W. Zucker. Computing contour closure. In Proceedings of the 4th European Conference on Computer Vision, Springer, Cambridge, UK, pp. 399–412, 1996. DOI: https://doi.org/10.1007/BFb0015553.

    Google Scholar 

  62. [62]

    W. S. Geisler, J. S. Perry, B. J. Super, D. P. Gallogly. Edge co-occurrence in natural images predicts contour-grouping performance. Vision Research, vol. 41, no. 6, pp. 711–724, 2001. DOI: https://doi.org/10.1016/S0042-6989(00)00277-7.

    Google Scholar 

  63. [63]

    K. Thornber, L. R. Williams. Analytic solution of stochastic completion fields. Biological Cybernetics, vol. 75, no. 2, pp. 141–151, 1996. DOI: https://doi.org/10.1007/s004220050282.

    MATH  Google Scholar 

  64. [64]

    L. R. Williams, D. W. Jacobs. Stochastic completion fields: A neural model of illusory contour shape and salience. Neural Computation, vol. 9, no. 4, pp. 837–858, 1997. DOI: 10.1162/neco.1997.9.4.837.

    Google Scholar 

  65. [65]

    A. Sha’shua, S. Ullman. Structural saliency: The detection of globally salient structures using a locally connected network. In Proceedings of the 2nd InternationalConference on Computer Vision, IEEE, Tampa, USA, 1988. DOI: https://doi.org/10.1109/CCV.1988.590008.

    Google Scholar 

  66. [66]

    L. Herault, R. Horaud. Figure-ground discrimination: A combinatorial optimization approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 15, no. 9, pp. 899–914, 1993. DOI: https://doi.org/10.1109/34.232076.

    Google Scholar 

  67. [67]

    S. Sarkar, K. L. Boyer. Quantitative measures of change-based on feature organization: Eigenvalues and eigen-vectors. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, San Francisco, USA, pp. 478–483, 1996. DOI: https://doi.org/10.1109/CVPR.1996.517115.

    Google Scholar 

  68. [68]

    G. Guy, G. Medioni. Inferring global pereeptual contours from local features. International Journal of Computer Vision, vol. 20, no.1–2, pp. 113–133, 1996. DOI: https://doi.org/10.1007/BF00144119.

    Google Scholar 

  69. [69]

    L. R. Williams. A comparison of measures for detecting natural shapes in cluttered backgrounds. International Journal of Computer Vision, vol. 34, no. 2–3, pp. 81–96, 1999. DOI: https://doi.org/10.1023/A:1008187804026.

    Google Scholar 

  70. [70]

    I. H. Jermyn, H. Ishikawa. Globally optimal regions and boundaries as minimum ratio weight cycles. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 10, pp. 1075–1088, 2001. DOI: https://doi.org/10.1109/34.954599.

    Google Scholar 

  71. [71]

    T. Schoenemann, S. Masnou, D. Cremers. The elastic ratio: Introducing curvature into ratio-based image segmentation. IEEE Transactions on Image Processing, vol. 20, no. 9, pp. 2565–2581, 2011. DOI: https://doi.org/10.1109/TIP.2011.2118225.

    MathSciNet  MATH  Google Scholar 

  72. [72]

    J. S. Stahl, S. Wang. Globally optimal grouping for symmetric closed boundaries by combining boundary and region information. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 3, pp. 395–411, 2008. DOI: https://doi.org/10.1109/TPAMI.2007.1186.

    Google Scholar 

  73. [73]

    Q. H. Zhu, G. Song, J. B. Shi. Untangling cycles for contour grouping. In Proceedings of the 11th IEEE Conference on Computer Vision, IEEE, Rio de Janeiro, Brazil, 2007. DOI: https://doi.org/10.1109/ICCV.2007.4408929.

    Google Scholar 

  74. [74]

    M. Meila, J. B. Shi. Learning segmentation by randomwalks. In Proceedings of the 14th Annual Neural Information Processing Systems, Denver, USA, pp. 839–873, 2001.

    Google Scholar 

  75. [75]

    I. Kokkinos. Highly accurate boundary detection and grouping. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, San Francisco, USA, pp. 2520–2527, 2010. DOI: https://doi.org/10.1109/CVPR.2010.5539956.

    Google Scholar 

  76. [76]

    B. Fischer, J. M. Buhmann. Path-based clustering forgrouping of smooth curves and texture segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 4, pp. 513–518, 2003. DOI: https://doi.org/10.1109/TPAMI.2003.1190577.

    Google Scholar 

  77. [77]

    P. Felzenszwalb, D. McAllester. A min-cover approachfor finding salient curves. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshop, IEEE, New York, USA, pp. 185, 2006. DOI: https://doi.org/10.1109/CVPRW.2006.18.

    Google Scholar 

  78. [78]

    D. W. Jacobs. Robust and efficient detection of salient-convex groups. IEEE Transactions on Pattern Analysisand Machine Intelligence, vol. 18, no. 1, pp. 23–37, 1996. DOI: https://doi.org/10.1109/34.476008.

    Google Scholar 

  79. [79]

    Y. S. Ming, H. D. Li, X. M. He. Connected contours: A new contour completion model that respects the closureeffect. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Providence, USA, pp. 892–836, 2012. DOI: https://doi.org/10.1109/CVPR.2012.6247755.

    Google Scholar 

  80. [80]

    X. F. Ren, C. C. Fowlkes, J. Malik. Learning probabilistic models for contour completion in natural images. International Journal of Computer Vision, vol. 77, no. 1–3, pp. 47–63, 2008. DOI: https://doi.org/10.1007/s11263-007-0092-6.

    Google Scholar 

  81. [81]

    M. Kass, A. Witkin, D. Terzopoulos. Snakes: Active contour models. International Journal of Computer Vision, vol. 1, no. 4, pp. 321–331, 1988. DOI: https://doi.org/10.1007/BF00133570.

    MATH  Google Scholar 

  82. [82]

    V. Caselles, R. Kimmel, G. Sapiro. Geodesic active contours. International Journal of Computer Vision, vol. 22, no. 1, pp. 61–79, 1997. DOI: https://doi.org/10.1023/A:1007979827043.

    MATH  Google Scholar 

  83. [83]

    V. Caselles, R. Kimmel, G. Sapiro. Geodesic active contours. In Proceedings of International Conference on Computer Vision, IEEE, Cambridge, USA, pp. 694–699, 1995. DOI: https://doi.org/10.1109/ICCV.1995.466871.

    Google Scholar 

  84. [84]

    S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum, A. Yezzi. Gradient flows and geometric active contourmodels. In Proceedings of the 5th IEEE International Conference on Computer vision, IEEE, Cambridge, USA, pp. 810–815, 1995. DOI: https://doi.org/10.1109/ICCV.1995.466855.

    Google Scholar 

  85. [85]

    A. Blake, M. Isard. Active Contours: The Application ofTechniques from Graphics, Vision, Control Theory andStatistics to Visual Tracking of Shapes in Motion, Berlin,Germany: Springer, pp. 49–103, 2012.

    Google Scholar 

  86. [86]

    L. D. Cohen. On active contour models and balloons. CV-GIP: Image Understanding, vol. 53, no. 2, pp. 211–218, 1991. DOI: https://doi.org/10.1016/1049-9660(91)90028-N.

    MATH  Google Scholar 

  87. [87]

    L. D. Cohen, L. Cohen. Finite-element methods for active contour models and balloons for 2D and 3D images. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 15, no. 11, pp. 1131–1147, 1993. DOI: https://doi.org/10.1109/34.244675.

    Google Scholar 

  88. [88]

    C. Y. Xu, J. L. Prince. Snakes, shapes, and gradient vector flow. IEEE Transactions on Image Processing, vol. 7, no. 3, pp. 359–369, 1998. DOI: https://doi.org/10.1109/83.661186.

    MathSciNet  MATH  Google Scholar 

  89. [89]

    O. Amadieu, E. Debreuve, M. Barlaud, G. Aubert. Inward and outward curve evolution using level set method. In Proceedings of International Conference on Image Processing, IEEE, Kobe, Japan, pp. 188–192, 1999. DOI: https://doi.org/10.1109/ICIP.1999.817097.

    Google Scholar 

  90. [90]

    M. E. Leventon, W. E. L. Grimson, O. Faugeras. Statistical shape influence in geodesic active contours. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Hilton Head Island, USA, pp. 316–323, 2000. DOI: https://doi.org/10.1109/CVPR.2000.855835.

    Google Scholar 

  91. [91]

    A. Dumitras, A. N. Venetsanopoulos. Angular map-driven snakes with application to object shape description incolor images. IEEE Transactions on Image Processing, vol. 10, no. 12, pp. 1851–1859, 2001. DOI: https://doi.org/10.1109/83.974570.

    MATH  Google Scholar 

  92. [92]

    L. H. Staib, J. S. Duncan. Boundary finding with parametrically deformable models. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14, no. 11, pp. 1061–1075, 1992. DOI: https://doi.org/10.1109/34.166621.

    Google Scholar 

  93. [93]

    S. R. Gunn, M. S. Nixon. A robust snake implementation:A dual active contour. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, no. 1, pp. 63–68, 1997. DOI: https://doi.org/10.1109/34.566812.

    Google Scholar 

  94. [94]

    B. Al-Diri, A. Hunter, D. Steel. An active contour model for segmenting and measuring retinal vessels. IEEE Transactions on Medical imaging, vol. 28, no. 9, pp. 1488–1497, 2009. DOI: https://doi.org/10.1109/TMI.2009.2017941.

    Google Scholar 

  95. [95]

    J. Park, J. M. Keller. Snakes on the watershed. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 10, pp. 1201–1205, 2001. DOI: https://doi.org/10.1109/34.954609.

    Google Scholar 

  96. [96]

    H. W. Park, T. Schoepflin, Y. Kim. Active contour model with gradient directional information: Directional snake. IEEE Transactions on Circuits and Systems for Video Technology, vol. 11, no. 2, pp. 252–256, 2001. DOI: https://doi.org/10.1109/76.905991.

    Google Scholar 

  97. [97]

    J. S. Suri, K. C. Liu, S. Singh, S. N. Laxminarayan, X. L. Zeng, L. Reden. Shape recovery algorithms using levelsets in 2D/3D medical imagery: A state-of-the-art review. IEEE Transactions on Information Technology in Biomedicine, vol. 6, no. 1, pp. 8–28, 2002. DOI: https://doi.org/10.1109/4233.992158.

    Google Scholar 

  98. [98]

    W. J. Zhou, Z. X. Fei, H. S. Hu, L. Liu, J. N. Li, P. J. Smith. Real-time object subspace searching based on discrete searching paths and local energy. InternationalJournal of Automation and Computing, vol. 13, no. 2, pp. 99–107, 2016. DOI: https://doi.org/10.1007/s11633-015-0946-2.

    Google Scholar 

  99. [99]

    N. R. Pal, S. K. Pal. A review on image segmentation techniques. Pattern Recognition, vol. 26, no. 9, pp. 1277–1294, 1993. DOI: https://doi.org/10.1016/0031-3203(93)90135-J.

    Google Scholar 

  100. [100]

    H. D. Cheng, X. H. Jiang, Y. Sun, J. L. Wang. Color image segmentation: Advances and prospects. Pattern Recognition, vol. 34, no. 12, pp. 2259–2281, 2001. DOI: https://doi.org/10.1016/S0031-3203(00)00149-7.

    MATH  Google Scholar 

  101. [101]

    R. C. Zhao, Y. D. Ma. A region segmentation method for region-oriented image compression. Neurocomputing, vol. 85, pp. 45–52, 2012. DOI: https://doi.org/10.1016/j.neucom.2012.01.007.

    Google Scholar 

  102. [102]

    P. Arbelaez. Boundary extraction in natural images using ultrametric contour maps. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, New York, USA, pp. 182–182, 2006. DOI: https://doi.org/10.1109/CVPRW.2006.48.

    Google Scholar 

  103. [103]

    P. Arbelaez, M. Maire, C. Fowlkes, J. Malik. From contours to regions: An empirical evaluation. In Proceedingsof IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Miami, USA, pp. 2294–2301, 2009. DOI: https://doi.org/10.1109/CVPR.2009.5206707.

    Google Scholar 

  104. [104]

    Y. S. Ming, H. D. Li, X. M. He. Winding number constrained contour detection. IEEE Transactions on ImageProcessing, vol. 24, no. 1, pp. 68–79, 2015. DOI: https://doi.org/10.1109/TIP.2014.2372636.

    MathSciNet  Google Scholar 

  105. [105]

    Y. S. Ming, H. D. Li, X. M. He. Winding number for region-boundary consistent salient contour extraction. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Portland, USA, pp. 2818–2825, 2013. DOI: https://doi.org/10.1109/CVPR.2013.363.

    Google Scholar 

  106. [106]

    L. D. Cohen, E. Bardnient, N. Ayache. Surface reconstruction using active contour models. In Proceedings SPIE Conference on Geometric Methods in Computer Vision, San Diego, USA, 1993.

    Google Scholar 

  107. [107]

    T. F. Chan, L. A. Vese. Active contours without edges. IEEE Transactions on Image Processing, vol. 10, no. 2, pp. 266–277, 2001. DOI: https://doi.org/10.1109/83.902291.

    MATH  Google Scholar 

  108. [108]

    L. A. Vese, T. F. Chan. A multiphase level set framework for image segmentation using the Mumford and Shahmodel. International Journal of Computer Vision, vol. 53, no. 3, pp. 271–293, 2002. DOI: https://doi.org/10.1023/A:1020874308076.

    MATH  Google Scholar 

  109. [109]

    A. Chakraborty, L. H. Staib, J. S. Duncan. Deformable boundary finding in medical images by integrating gradient and region information. IEEE Transactions on Medical Imaging, vol. 15, no. 6, pp. 859–870, 1996. DOI: https://doi.org/10.1109/42.544503.

    Google Scholar 

  110. [110]

    S. C. Zhu, A. Yuille. Region competition: Unifying snakes, region growing, and Bayes/MDL for multibandimage segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 18, no. 9, pp. 884–900, 1996. DOI: https://doi.org/10.1109/34.537343.

    Google Scholar 

  111. [111]

    N. Paragios, R. Deriche. Geodesic active regions and level set methods for supervised texture segmentation. International Journal of Computer Vision, vol. 46, no. 3, pp. 223–247, 2002. DOI: https://doi.org/10.1023/A:1014080923068.

    MATH  Google Scholar 

  112. [112]

    D. Cremers, F. Tischhuser, J. Weickert, C. Schnorr. Diffusion snakes: Introducing statistical shape knowledge into the Mumford-Shah functional. International Journal of Computer Vision, vol. 50, no. 3, pp. 295–313, 2002. DOI: https://doi.org/10.1023/A:1020826424915.

    MATH  Google Scholar 

  113. [113]

    C. Collewet. Polar snakes: A fast and robust parametric active contour model. In Proceedings of the 16th IEEE International Conference on Image Processing, IEEE, Cairo, Egypt, pp. 3013–3016, 2009. DOI: https://doi.org/10.1109/ICIP.2009.5414444.

    Google Scholar 

  114. [114]

    B. Zhao, J. S. Feng, X. Wu, S. C. Yan. A survey on deep learning-based fine-grained object classification and semantic segmentation. International Journal of Automation and Computing, vol. 14, no. 2, pp. 119–135, 2017. DOI: https://doi.org/10.1007/s11633-017-1053-3.

    Google Scholar 

  115. [115]

    A. Krizhevsky, I. Sutskever, G. E. Hinton. ImageNet classification with deep convolutional neural networks. In Proceedings of Advances in Neural Information Processing Systems, Lake Tahoe, Spain, pp. 1097–1105, 2012. DOI: https://doi.org/10.1145/3065386.

    Google Scholar 

  116. [116]

    K. Simonyan, A. Zisserman. Very deep convolutional networks for large-scale image recognition. https://doi.org/arxiv.org/pdf/1409.1556.pdf

  117. [117]

    C. Szegedy, W. Liu, Y. Q. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich. Going deeper with convolutions. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Boston, USA, pp. 1–9, 2015. DOI: https://doi.org/10.1109/CVPR.2015.7298594.

    Google Scholar 

  118. [118]

    K. M. He, X. Y. Zhang, S. Q. Ren, J. Sun. Deep residual learning for image recognition. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Las Vegas, USA, pp. 770–778, 2016. DOI: https://doi.org/10.1109/CVPR.2016.90.

    Google Scholar 

  119. [119]

    S. Ioffe, C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the 32nd International Conference on Machine Learning, IEEE, Lille, France, pp. 448–456, 2015.

    Google Scholar 

  120. [120]

    E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, R. R. Salakhutdinov. Improving neural networks by preventing co-adaptation of feature detectors. https://doi.org/arxiv.org/pdf/1207.0580.pdf

  121. [121]

    Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, L. D. Jackel. Backpropagation applied to hand written zip code recognition. Neural Computation, vol. 1, no. 4, pp. 541–551, 1989. DOI: https://doi.org/10.1162/neco.1989.1.4.541.

    Google Scholar 

  122. [122]

    E. Shelhamer, J. Long, T. Darrell. Fully convolutional networks for semantic segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 4, pp. 640–651, 2017. DOI: https://doi.org/10.1109/TPAMI.2016.2572683.

    Google Scholar 

  123. [123]

    L. C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, A. L. Yuille. Semantic image segmentation with deep convolutional nets and fully connected CRFs. https://doi.org/arxiv.org/pdf/1412.7062.pdf

  124. [124]

    L. C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, A. L. Yuille. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fullyconnected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 4, pp. 834–848, 2018. DOI: https://doi.org/10.1109/TPAMI.2017.2699184.

    Google Scholar 

  125. [125]

    F. Yu, V. Koltun. Multi-scale context aggregation by dilated convolutions. https://doi.org/arxiv.org/pdf/1511.07122.pdf

  126. [126]

    H. Noh, S. Hong, B. Han. Learning deconvolution network for semantic segmentation. In Proceedings of IEEE International Conference on Computer Vision, IEEE,Santiago, Chile, pp. 1520–1528, 2015. DOI: https://doi.org/10.1109/ICCV.2015.178.

    Google Scholar 

  127. [127]

    V. Badrinarayanan, A. Kendall, R. Cipolla. SegNet: Adeep convolutional encoder-decoder architecture for image segmentation. https://doi.org/arxiv.org/pdf/1511.00561.pdf

  128. [128]

    P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, Y. LeCun. OverFeat: Integrated recognition, localizationand detection using convolutional networks. https://doi.org/arx-iv.org/pdf/1312.6229.pdf

  129. [129]

    J. F. Dai, K. M. He, J. Sun. BoxSup: Exploiting bounding boxes to supervise convolutional networks for semantic segmentation. In Proceedings of IEEE Conference onComputer Vision, IEEE, Santiago, Chile, pp. 1635–1643, 2015. DOI: https://doi.org/10.1109/ICCV.2015.191.

    Google Scholar 

  130. [130]

    P. O. Pinheiro, R. Collobert. Weakly supervised semantic segmentation with convolutional networks. https://doi.org/arxiv.org/pdf/1705.09052.pdf

  131. [131]

    S. Hong, H. Noh, B. Han. Decoupled deep neural networkfor semi-supervised semantic segmentation. In Proceedings of Advances in Neural Information Processing Systems, Montreal, Canada, pp. 1495–1503, 2015.

    Google Scholar 

  132. [132]

    G. Papandreou, L. C. Chen, K. P. Murphy, A. L. Yuille. Weakly- and semi-supervised learning of a deep convolutional network for semantic image segmentation. In Proceedings of IEEE International Conference on Computer Vision, IEEE, Santiago, Chile, pp. 1742–1750, 2015. DOI: https://doi.org/10.1109/ICCV.2015.203.

    Google Scholar 

  133. [133]

    R. Girshick, J. Donahue, T. Darrell, J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of IEEE Conference onComputer Vision and Pattern Recognition, IEEE, Columbus, USA, pp. 580–587, 2014. DOI: https://doi.org/10.1109/CV-PR.2014.81.

    Google Scholar 

  134. [134]

    K. M. He, X. Y. Zhang, S. Q. Ren, J. Sun. Spatial pyramid pooling in deep convolutional networks for visual recognition. In Proceedings of the 13th European Conference on Computer Vision, Zurich, Switzerland, pp. 346–361, 2014. DOI: https://doi.org/10.1007/978-3-319-10578-9_23.

    Google Scholar 

  135. [135]

    S. Q. Ren, K. M. He, R. Girshick, J. Sun. Faster R-CNN:Towards real-time object detection with region proposal networks. In Proceedings of Advances in Neural Information Processing, Montreal, Canada, pp. 91–99, 2015.

    Google Scholar 

  136. [136]

    Y. Ganin, V. Lempitsky. N.4-fields: Neural networknearest neighbor fields for image transforms. In Proceedings of the 12th Asian Conference on Computer Vision, Springer, Singapore, pp. 536–541, 2014. DOI: https://doi.org/10.1007/978-3-319-16808-1_36.

    Google Scholar 

  137. [137]

    W. Shen, X. G. Wang, Y. Wang, X. Bai, Z. J. Zhang. DeepContour: A deep convolutional feature learned by positive-sharing loss for contour detection. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Boston, USA, pp. 3982–3991, 2015. DOI: https://doi.org/10.1109/CVPR.2015.7299024.

    Google Scholar 

  138. [138]

    J. J. Hwang, T. L. Liu. Pixel-wise deep learning for contour detection. https://doi.org/arxiv.org/pdf/1504.01989.pdf

  139. [139]

    G. Bertasius, J. B. Shi, L. Torresani. DeepEdge: A multi-scale bifurcated deep network for top-down contour detection. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Boston, USA, pp. 4380–4389, 2015. DOI: https://doi.org/10.1109/CVPR.2015.7299067.

    Google Scholar 

  140. [140]

    S. Xie, Z. W. Tu. Holistically-nested edge detection. In Proceedings of IEEE Conference on Computer Vision, IEEE, Santiago, Chile, pp. 1395–1403, 2015. DOI: https://doi.org/10.1109/ICCV.2015.164.

    Google Scholar 

  141. [141]

    Y. Liu, M. S. Lew. Learning relaxed deep supervision for better edge detection. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Las Vegas, USA, pp. 231–240, 2016. DOI: https://doi.org/10.1109/CVPR.2016.32.

    Google Scholar 

  142. [142]

    Y. Liu, M. M. Cheng, X. W. Hu, K. Wang, X. Bai. Richer convolutional features for edge detection. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Honolulu, USA, 2017. DOI: https://doi.org/10.1109/CVPR.2017.622.

    Google Scholar 

  143. [143]

    K. K. Maninis, J. Pont-Tuset, P. Arbelaez, L. Van Gool. Convolutional oriented boundaries. In Proceedings of the 14th European Conference on Computer Vision, Springer, Amsterdam, The Netherlands, pp. 580–596, 2016. DOI: https://doi.org/10.1007/978-3-319-46448-0_35.

    Google Scholar 

  144. [144]

    C. Y. Lee, S. Xie, P. W. Gallagher, Z. Y. Zhang, Z. W. Tu. Deeply-supervised nets. In Proceedings of the 18 thInternational Conference on Artificial Intelligence andStatistics, JMLR, San Diego, USA, pp. 562–570, 2015.

    Google Scholar 

  145. [145]

    J. R. R. Uijlings, V. Ferrari. Situational object boundary detection. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Boston,USA, pp. 4712–4721, 2015. DOI: https://doi.org/10.1109/CVPR.2015.7299103.

    Google Scholar 

  146. [146]

    A. Khoreva, R. Benenson, M. Omran, M. Hein, B. Schiele. Weakly supervised object boundaries. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Las Vegas, USA, pp. 183–192, 2016. DOI: https://doi.org/10.1109/CVPR.2016.27.

    Google Scholar 

  147. [147]

    B. Hariharan, P. Arbelaez, L. Bourdev. Semantic contours from inverse detectors. In Proceedings of IEEE Conference on Computer Vision, IEEE, Barcelona, Spain, pp. 991–998, 2011. DOI: https://doi.org/10.1109/CVPR.2016.27.

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Nos. 61503378, 61473293, 51405485 and 61403378), the Project of Development in Tianjin for Scientific Research Institutes, and Tianjin Government (No. 16PTYJGX00050).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hua-Bin Yang.

Additional information

Recommended by Associate Editor Nazim Mir-Nasiri

Xin-Yi Gong received the B. Sc. degree in automation from Tsinghua University, China in 2014. He is currently a Ph. D. degree candidate in control science and engineering at Institute of Automation, Chinese Academy of Sciences, University of Chinese Academy of Sciences, China.

His research interests include computer vision, image processing, pattern recognition and machine learning.

Hu Su received the B. Sc. degree in information and computing science and the M. Sc. degree in operational research and cybernetics from Shandong University, China in 2007 and 2010, respectively, and the Ph. D. degree in control science and engineering from the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences (IACAS), China in 2013. Since 2013, he has been with the IACAS, China, where he is currently an associate researcher in the Research Center of Precision Sensing and Control, China.

His research interests include intelligent control and optimization.

De Xu received the B. Sc. and M. Sc. degrees in control science and engineering from Shandong University of Technology, China in 1985 and 1990, respectively, and the Ph. D. degree in control science and engineering from Zhejiang University, China in 2001. Since 2001, he has been with IACAS, China. He is currently a professor in the Research Center of Precision Sensing and Control, IACAS, China.

His research interests include robotics and automation, especially the control of robots such as visual control and intelligent control.

Zheng-Tao Zhang received the B. Sc. degree in control science and engineering from China University of Petroleum, China in 2004, the M. Sc. degree in control science and engineering from Beijing Institute of Technology, China in 2007, and the Ph. D. degree in control science and engineering from IACAS, China in 2010. He is a professor in the Research Center of Precision Sensing and Control, IACAS, China.

His research interests include visual measurement, micro-assembly and automation.

Fei Shen received the B. Sc. degree in measurement and control technology and instrument from Xidian University, China in 2007, and the M. Sc. degree in guidance navigation and control from Beijing Institute of Technology, China in 2009, and the Ph. D. degree in control science and engineering from IACAS, China in 2012. He is currently an associate professor in the Research Center of Precision Sensing and Control, IACAS, China.

His research interests include robot control, robot vision control and micro-assembly.

Hua-Bin Yang received the B. Sc. degree in mechanical manufacture and automation from Shandong University of Technology, China in 2010, and the Ph. D. degree in mechanical manufacture and automation from Changchun Institute of Optics, Mechanics and Physics, Chinese Academy of Sciences (CIOMPCAS), China in 2015. He is a research assistant professor in the Research Center of Precision Sensing and Control, IACAS, China.

His research interests include optics and precision mechanics, visual measurement and automation.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gong, X., Su, H., Xu, D. et al. An Overview of Contour Detection Approaches. Int. J. Autom. Comput. 15, 656–672 (2018). https://doi.org/10.1007/s11633-018-1117-z

Download citation

Keywords

  • Contour detection
  • contour salience
  • gestalt principle
  • contour grouping
  • active contour