Special Spectral Approach to Solutions of SISO LTI H-Optimization Problems

Research Article

Abstract

The paper is devoted to H-optimization problems for linear time invariant (LTI) systems with scalar control, external disturbance and measurement noise. All these problems can be numerically solved with the help of the well-known universal approaches based on Riccati equations, linear matrix inequalities (LMI) or maximum entropy technique. Nevertheless, in our opinion there exists a possibility to increase the computational efficiency of synthesis using a special spectral approach to the above mentioned problems in frequency domain. Some relevant details are discussed and efficient numerical algorithms are proposed for the practical implementation of spectral approach. One of its virtues is a possibility to present optimal solutions in a specific form, which is convenient for investigation.

Keywords

Stabilizing controller performance index synthesis H-optimization spectral approach 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. J. Grimble. Robust Industrial Control Systems: Opti-mal Design Approach for Polynomial Systems, New Jersey, USA: John Wiley & Sons, 2006.CrossRefGoogle Scholar
  2. [2]
    S. P. Bhattacharyya, A. Datta, L. H. Keel. Linear Control Theory: Structure, Robustness and Optimization, Boca Raton, USA: CRC Press, Taylor & Francis Group, 2009.MATHGoogle Scholar
  3. [3]
    D. Liberzon. Calculus of Variations and Optimal Control Theory: A Concise Introduction, Princeton, USA: Prince-ton University Press, 2012.MATHGoogle Scholar
  4. [4]
    D. W. Gu, P. H. Petkov, M. M. Konstantinov. Robust Con-trol Design with Matlab, London, UK: Springer, 2013.CrossRefMATHGoogle Scholar
  5. [5]
    A. Domahidi. Methods and Tools for Embedded Optimiza-tion and Control, Ph. D. dissertation, Swiss Federal Insti-tute of Technology Zurich, Zurich, Switzerland, 2013.Google Scholar
  6. [6]
    W. Yu, S. Thenozhi. Active Structural Control with Stable Fuzzy PID Techniques, Switzerland: Springer, 2016.CrossRefMATHGoogle Scholar
  7. [7]
    Y. F. Zhu, F. W. Yang. Simultaneous H 2/H stabilization for chemical reaction systems based on orthogonal comple-ment space. International Journal of Automation and Com-puting, vol. 13, no. 1, pp. 19–30, 2016. DOI: 10.1007/s11633-015-0907-9.CrossRefGoogle Scholar
  8. [8]
    H. A. Ismail, M. S. Packianather, R. I. Grosvenor. Multi-objective invasive weed optimization of the LQR con-troller. International Journal of Automation and Comput-ing, vol. 14, no. 3, pp. 321–329, 2017. DOI: 10.1007/s11633-017-1061-3.CrossRefGoogle Scholar
  9. [9]
    F. A. Aliev, V. B. Larin. Parametrization of sets of stabi-lizing controllers in mechanical systems. International Ap-plied Mechanics, vol. 44, no. 6, pp. 599–618, 2008. DOI: 10.1007/s10778-008-0085-3.CrossRefGoogle Scholar
  10. [10]
    V. Kuçera. Polynomial control: Past, present, and future. International Journal of Robust and Nonlinear Control, vol. 17, no. 8, pp. 682–705, 2007. DOI: 10.1002/rnc.1127.MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    J. C. Doyle, B. A. Francis, A. R. Tannenbaum. Feedback Control Theory, New York, USA: Maxwell MacMillan In-ternat, 1992.Google Scholar
  12. [12]
    S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan. Lin-ear Matrix Inequalities in System and Control Theory, Philadelphia, USA: SIAM, 1994.CrossRefMATHGoogle Scholar
  13. [13]
    G. J. Balas, J. C. Doyle, K. Glover, A. Packard, R. Smith. μ-Analysis and Synthesis TOOLBOX: Users Guide, Natick, USA: The MathWorks Inc., 1998.Google Scholar
  14. [14]
    H. Kwakernaak. H 2-optimization-theory and applications to robust control design. Annual Reviews in Control, vol. 26, no. 1, pp. 45–56, 2002. DOI: 10.1016/S1367-5788(02)80010-4.CrossRefGoogle Scholar
  15. [15]
    E. I. Veremey. Algorithms for solving a class of problems of H -optimization of control systems. Journal of Computer and Systems Sciences International, vol. 50, no. 3, pp. 403–412, 2011. DOI: 10.1134/S1064230711010187.MathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    E. I. Veremey. Efficient spectral approach to SISO problems of H 2-optimal synthesis. Applied Mathemati-cal Sciences, vol. 9, no. 79, pp. 3897–3909, 2015. DOI: 10.12988/ams.2015.54335.CrossRefGoogle Scholar
  17. [17]
    E. I. Veremey. H 2-optimal synthesis problem with nonunique solution. Applied Mathematical Sciences, vol. 10, no. 38, pp. 1891–1905, 2016. DOI: 10.12988/ ams.2016.63120.CrossRefGoogle Scholar
  18. [18]
    E. Veremey, M. Sotnikova. Spectral approach to H -optimal SISO synthesis problem. WSEAS Transactions on Systems and Control, vol. 9, pp. 415–424, 2014.Google Scholar
  19. [19]
    E. I. Veremey. H -approach to wave disturbance filtering for marine autopilots. In Proceedings of the 9th IFAC Con-ference on Maneuvering and Control of Marine Craft, IFAC, Arenzano, Italy, pp. 410–415, 2012.Google Scholar
  20. [20]
    E. I. Veremey. Dynamical correction of control laws for marine ships accurate steering. Journal of Marine Science and Application, vol. 13, no. 2, pp. 127–133, 2014. DOI: 10.1007/s11804-014-1250-1.CrossRefGoogle Scholar
  21. [21]
    E. I. Veremey. Optimization of filtering correctors for au-topilot control laws with special structures. Optimal Con-trol Applications and Methods, vol. 37, no. 2, pp. 323–339, 2016. DOI: 10.1002/oca.2170.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Institute of Automation, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Applied Mathematics and Control ProcessesSaint-Petersburg State UniversitySaint-PetersburgRussia

Personalised recommendations