Advertisement

Adaptive Fuzzy Sliding Mode Control of Under-actuated Nonlinear Systems

  • Amir Hossein Davaie Markazi
  • Mohammad Maadani
  • Seyed Hassan Zabihifar
  • Nafiseh Doost-Mohammadi
Research Article

Abstract

A new extension of the conventional adaptive fuzzy sliding mode control (AFSMC) scheme, for the case of under-actuated and uncertain affine multiple-input multiple-output (MIMO) systems, is presented. In particular, the assumption for non-zero diagonal entries of the input gain matrix of the plant is relaxed. In other words, the control effect of one actuator can propagate from a subgroup of canonical state equations to the rest of equations in an indirect sense. The asymptotic stability of the proposed AFSM control method is proved using a Lyapunov-based methodology. The effectiveness of the proposed method for the case of under-actuated systems is investigated in the presence of plant uncertainties and disturbances, through simulation studies.

Keywords

Adaptive fuzzy sliding mode control (AFSMC) nonlinear systems uncertain systems under-actuated systems remote environmental monitoring units (REMUS) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. G. Zhang, L. L. Cui, X. Zhang, Y. H. Luo. Data-driven robust approximate optimal tracking control for unknown general nonlinear systems using adaptive dynamic programming method. IEEE Transactions on Neural Networks, vol. 22, no. 12, pp. 2226–2236, 2011. DOI: 10.1109/TNN.2011.2168538.CrossRefGoogle Scholar
  2. [2]
    Y. P, Pan, J. Wang. Model predictive control of unknown nonlinear dynamical systems based on recurrent neural networks. IEEE Transactions on Industrial Electronics, vol. 59, no. 8, pp. 3089–3101, 2012. DOI: 10.1109/TIE.2011.2169636.MathSciNetCrossRefGoogle Scholar
  3. [3]
    J. J. E. Slotine, W. P. Li. Applied Nonlinear Control, New Jersey: Prentice-Hall, 1991.MATHGoogle Scholar
  4. [4]
    H. K. Khalil, Nonlinear Systems, 3rd ed., New Jersey, USA: Prentice-Hall, 2002.MATHGoogle Scholar
  5. [5]
    A. Abrishamifar, A. Ahmad, M. Mobamadian. Fixed switching frequency sliding mode control for single-phase unipolar inverters. IEEE Transactions on Power Electronics, vol. 27, no. 5, pp. 2507–2514, 2012. DOI: 10.1109/TPEL.2011.2175249.CrossRefGoogle Scholar
  6. [6]
    T. Takagi, M. Sugeno. Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-15, no. 1, pp. 116–132, 1985. DOI: 10.1109/TSMC.1985.6313399.CrossRefMATHGoogle Scholar
  7. [7]
    Y. C. Hsu, H. A. Malki. Fuzzy variable structure control for MIMO systems. In Proceedings of IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence, IEEE, Anchorage, AK, USA, pp. 280–285, 1998.Google Scholar
  8. [8]
    D. Pelusi. Optimization of a fuzzy logic controller using genetic algorithms. In Proceedings of IEEE International Conference on Intelligent Human-machine Systems and Cybernetics, IEEE, Zhejiang, China, pp. 143–146, 2011.Google Scholar
  9. [9]
    S. Kundu, D. R. Parhi. Reactive navigation of underwater mobile robot using ANFIS approach in a manifold manner. International Journal of Automation and Computing, vol. 14, no. 3, pp. 307–320, 2017. DOI: 10.1007/s11633-016-0983-5.CrossRefGoogle Scholar
  10. [10]
    A. Ishigame, T. Furukawa, S. Kawamoto, T. Taniguchi. Sliding mode controller design based on fuzzy inference for non-linear systems. In Proceedings of International Conference on Industrial Electronics, Control and Instrumentation, IEEE, Kobe, Japan, pp. 64–70, 1993.Google Scholar
  11. [11]
    M. Roopaei, M. Zolghadri Jahromi. Chattering-free fuzzy sliding mode control in MIMO uncertain systems. Nonlinear Analysis, vol. 71, no. 10, pp. 4430–4437, 2009. DOI: 10.1016/j.na.2009.02.132.MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    C. M. Lin, T. Y. Chen, W. Z. Fan, Y. F. Lee. Adaptive fuzzy sliding mode control for a two-link robot. In Proceedings of IEEE International Conference on Robotics and Biomimetics, IEEE, Shatin, China, pp. 581–586, 2005.Google Scholar
  13. [13]
    A. Poursamad, A. H. D. Markazi. Adaptive fuzzy sliding-mode control for multi-input multi-output chaotic systems. Chaos, Solitons & Fractals, vol. 42, no. 5, pp. 3100–3109, 2009. DOI: 10.1016/j.chaos.2009.04.044.MathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    F. Qiao, Q. M. Zhu, A. F. T. Winfield, C. Melhuish. Adaptive sliding mode control for MIMO nonlinear systems based on fuzzy logic scheme. International Journal of Automation and Computing, vol. 1, no. 1, pp. 51–62, 2004. DOI: 10.1007/s11633-004-0051-4.CrossRefGoogle Scholar
  15. [15]
    W. S. Lin, C. S. Chen. Robust adaptive sliding mode control using fuzzy modelling for a class of uncertain MIMO nonlinear systems. IEEE Proceedings–Control Theory and Applications, vol. 149, no. 3, pp. 193–202, 2002. DOI: 10.1049/ip-cta:20020236.MathSciNetCrossRefGoogle Scholar
  16. [16]
    M. Khazaee, A. H. D. Markazi, S. T. Rizi, B. Seyfi. Adaptive fuzzy sliding mode control of input-delayed uncertain nonlinear systems through output-feedback. Nonlinear Dynamics, vol. 87, no. 3, pp. 1943–1956, 2017. DOI: 10.1007/s11071-016-3164-8.CrossRefMATHGoogle Scholar
  17. [17]
    M. Benbrahim, N. Essounbouli, A. Hamzaoui, A. Betta. Adaptive type-2 fuzzy sliding mode controller for SISO nonlinear systems subject to actuator faults. International Journal of Automation and Computing, vol. 10, no. 4, pp. 335–342, 2013. DOI: 10.1007/s11633-013-0729-6.CrossRefGoogle Scholar
  18. [18]
    S. Moussaoui, A. Boulkroune. Stable adaptive fuzzy sliding-mode controller for a class of underactuated dynamic systems. Recent Advances in Electrical Engineering and Control Applications, M. Chadli, S. Bououden, I. Zelinka, Eds., Cham: Springer, 2017.Google Scholar
  19. [19]
    H. S. Haghighi, A. H. D. Markazi. Chaos prediction and control in MEMS resonators. Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 10, pp. 3091–3099, 2010. DOI: 10.1016/j.cnsns.2009.10.002.CrossRefGoogle Scholar
  20. [20]
    Y. T. Bai, P. Li. Adaptive fuzzy sliding mode control for electro-hydraulic position servo system. In Proceedings of Chinese Control and Decision Conference, IEEE, Xuzhou, China, pp. 3249–3253, 2010.Google Scholar
  21. [21]
    J. F. Wang, C. G. Wang, B. Feng, Y. X. Sun, J. Liu. Robust adaptive fuzzy sliding mode control of PM synchronous servo motor. In Proceedings of Chinese Control and Decision Conference, IEEE, Xuzhou, China, pp. 3419–3422, 2010.Google Scholar
  22. [22]
    S. M. Liu, L. Ding. Application of adaptive fuzzy sliding mode controller in PMSM servo system. In Proceedings of International Conference on Computing, Control and Industrial Engineering, IEEE, Wuhan, China, pp. 95–98, 2010.Google Scholar
  23. [23]
    A. Poursamad, A. H. Davaie-Markazi. Robust adaptive fuzzy control of unknown chaotic systems. Applied Soft Computing, vol. 9, no. 3, pp. 970–976, 2009. DOI: 10.1016/j.asoc.2008.11.014.CrossRefGoogle Scholar
  24. [24]
    T. Prestero. Verification of a Six-degree of Freedom Simulation Model for the REMUS Autonomous Underwater vehicle, Master dissertation, University of California, USA, 2001.CrossRefGoogle Scholar
  25. [25]
    D. P. Brutzman. A Virtual World for an Autonomous Underwater Vehicle, Ph. D. Dissertation, Naval Postgraduate School, USA, 1994.Google Scholar
  26. [26]
    T. I. Fossen. Guidance and Control of Ocean Vehicles, Chichester, UK: John Wiley and Sons, 1994.Google Scholar

Copyright information

© Institute of Automation, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mechanical EngineeringIran University of Science and TechnologyTehranIran

Personalised recommendations