Advertisement

Genetic programming-based self-reconfiguration planning for metamorphic robot

  • Tarek AbabsaEmail author
  • Noureddine Djedl
  • Yves Duthen
Research Article

Abstract

This paper presents a genetic programming based reconfiguration planner for metamorphic modular robots. Initially used for evolving computer programs that can solve simple problems, genetic programming (GP) has been recently used to handle various kinds of problems in the area of complex systems. This paper details how genetic programming can be used as an automatic programming tool for handling reconfiguration-planning problem. To do so, the GP evolves sequences of basic operations which are required for transforming the robot’s geometric structure from its initial configuration into the target one while the total number of modules and their connectedness are preserved. The proposed planner is intended for both Crystalline and TeleCube modules which are achieved by cubical compressible units. The target pattern of the modular robot is expressed in quantitative terms of morphogens diffused on the environment. Our work presents a solution for self reconfiguration problem with restricted and unrestricted free space available to the robot during reconfiguration. The planner outputs a near optimal explicit sequence of low-level actions that allows modules to move relative to each other in order to form the desired shape.

Keywords

Modular robots unit-compressible modules self-reconfiguration genetic programming reconfiguration planning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Kubica, A. Casal, T. Hogg. Complex behaviors from local rules in modular self-reconfigurable robots. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Seoul, South Korea, pp. 360–367, 2001.Google Scholar
  2. [2]
    M. Yim, W. M. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson, E. Klavins, G. S. Chirikjian, Modular selfreconfigurable robot systems. IEEE Robotics and Automation Magazine, vol 14, no. 1, pp. 43–52, 2007.CrossRefGoogle Scholar
  3. [3]
    B. Salemi, M. Moll, W. M. Shen. SUPERBOT: A deployable, multi-functional, and modular self-reconfigurable robotic system. In Proceedings of 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Beijing, China, pp. 3636–3641, 2006.CrossRefGoogle Scholar
  4. [4]
    D. Rus, M. Vona, Crystalline robots: Self-reconfiguration with compressible unit modules. Autonomous Robots, vol 10, no. 1, pp. 107–124, 2001.CrossRefzbMATHGoogle Scholar
  5. [5]
    G. S. Chirikjian, A. Pamecha, I. Ebert-Uphoff. Evaluating efficiency of self-reconfiguration in a class of modular robots. Journal of Robotic Systems, vol. 13, no. 5, pp. 317–338, 1996.CrossRefzbMATHGoogle Scholar
  6. [6]
    A. Pamecha, G. Chirikjian. A useful metric for modular robot motion planning. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Minneapolis, USA, pp. 442–447, 1996.CrossRefGoogle Scholar
  7. [7]
    A. Pamecha, I. Ebert-Uphoff, G. S. Chirikjian, Useful metrics for modular robot motion planning. IEEE Transactions on Robotics and Automation, vol 13, no. 4, pp. 531–545, 1997.CrossRefzbMATHGoogle Scholar
  8. [8]
    G. Aloupis, S. Collette, M. Damian, E. D. Demaine, R. Flatland, S. Langerman, J. O sourke, S. Ramaswami, V. Sacristan, S. Wuhrer, Linear reconfiguration of cube-style modular robots. In Proceedings of the 18th International Symposium, Lecture Notes in Computer Science, Springer, Sendai, Japan, vol 4835, pp. 208–219, 2007.MathSciNetzbMATHGoogle Scholar
  9. [9]
    T. Larkworthy, S. Ramamoorthy. An efficient algorithm for self-reconfiguration planning in a modular robot. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Anchorage, USA, pp. 5139–5146, 2010.Google Scholar
  10. [10]
    Z. Butler, D. Rus, Distributed planning and control for modular robots with unit-compressible modules. International Journal of Robotics Research, vol 22, no. 9, pp. 699–715, 2003.CrossRefGoogle Scholar
  11. [11]
    J. Kubica, A. Casal, T. Hogg. Agent-based control for object manipulation with modular self-reconfigurable robots. In Proceedings of the 17th International Joint Conference on Artificial Intelligence, Morgan Kaufmann Publishers Inc., San Francisco, USA, pp. 1344–1349, 2001.Google Scholar
  12. [12]
    R. Kala. Multi-robot path planning using co-evolutionary genetic programming. Expert Systems with Applications, vol. 39, no. 3, pp. 3817–3831, 2012.MathSciNetCrossRefGoogle Scholar
  13. [13]
    Y. P.Wang, L. Cheng, Z. G. Hou, J. Z. Yu, M. Tan, Optimal formation of multirobot systems based on a recurrent neural network. IEEE Transactions on Neural Networks and Learning Systems, vol 27, no. 2, pp. 322–333, 2016.MathSciNetCrossRefGoogle Scholar
  14. [14]
    D. Rus, M. Vona. A physical implementation of the selfreconfiguring crystalline robot. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, San Francisco, USA, pp. 1726–1733, 2000.Google Scholar
  15. [15]
    J. R. Koza. Genetic Programming: On the Programming of Computers by Means of Natural Selection, Cambridge, USA: MIT Press, 1992.zbMATHGoogle Scholar
  16. [16]
    J. R. Koza. Genetic Programming II: Automatic Discovery of Reusable Programs, Cambridge, USA: MIT Press, 1994.zbMATHGoogle Scholar
  17. [17]
    T. K. Paul, H. Iba. Genetic programming for classifying cancer data and controlling humanoid robots. Genetic Programming Theory and Practice IV, R. Riolo, T. Soule, B. Worzel, Eds., New York, USA: Springer, pp. 41–59, 2007.CrossRefGoogle Scholar
  18. [18]
    T. Ababsa, Y. Duthen. Splittable metamorphic carrier robots. Artificial Life 14, H. Sayama, J. Rieffel, S. Risi, R. Doursat, H. Lipson, Eds., New York USA: MIT Press, pp. 801–808, 2014.Google Scholar
  19. [19]
    T. Steiner, J. Trommler, M. Brenn, Y. C. Jin, B. Sendhoff. Global shape with morphogen gradients and motile polarized cells. In Proceedings of IEEE Congress on Evolutionary Computation, IEEE, Trondheim, Norway, pp. 2225–2232, 2009.Google Scholar

Copyright information

© Institute of Automation, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.LESIA LaboratoryUniversity of BiskraBiskraAlgeria
  2. 2.IRIT LaboratoryUniversity of Toulouse 1 CapitoleToulouseFrance

Personalised recommendations