Skip to main content
Log in

New time-varying fuzzy sets based on a PSO midpoint of the universe of discourse

  • Research Article
  • Published:
International Journal of Automation and Computing Aims and scope Submit manuscript

Abstract

The paper presents a robust parallel distributed compensation (PDC) fuzzy controller for a nonlinear and certain system in continuous time described by the Takagi-Sugeno (T-S) fuzzy model. This controller is based on a new type of time-varying fuzzy sets (TVFS). These fuzzy sets are characterized by displacement of the kernels to the right or left of the universe of discourse, and they are directed by a well-defined criterion. In this work, we only focused on the movement of midpoint of the universe. The movements of this midpoint are optimized by particle swarm optimization (PSO) approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Takagi, M. Sugeno. Fuzzy identification of systems and its application to modeling and control. IEEE Transactions on Systems, Man and Cybernetics, vol. 15, no. 1, pp. 116–132, 1985.

    Article  MATH  Google Scholar 

  2. H. O. Wang, K. Tanaka, M. F. Griffin. An approach to fuzzy control of nonlinear systems: Stability and design issues. IEEE Transactions on Fuzzy Systems, vol. 4, no. 1, pp. 14–23, 1996.

    Article  Google Scholar 

  3. C. W. Ting, C. Quek. A novel blood glucose regulation using TSK-FCMAC: A fuzzy CMAC based on the zeroordered TSK fuzzy inference scheme. IEEE Transactions on Neural Networks, vol. 20, no. 5, pp. 856–871, 2009.

    Article  Google Scholar 

  4. D. M. Wonohadidjojo, G. Kothapalli, M. Y. Hassan. Position control of Electro-hydraulic actuator system using fuzzy logic controller optimized by particle swarm optimization. International Journal of Automation and Computing, vol. 10, no. 3, pp. 181–193, 2013.

    Article  Google Scholar 

  5. A. El Hajjaji, S. Bentalba. Fuzzy path tracking control for vehicle dynamics. International Journal of Robotics and Autonomous Systems, vol. 43, no. 2, pp. 203–213, 2003.

    Article  Google Scholar 

  6. D. Niemann, J. Li, H. O. Wang, K. Tanaka. Parallel distributed compensation for Takagi-Sugeno fuzzy models: New stability conditions and dynamic feedback designs. In Proceeding of the 14th World Congress of IFAC, IFAC, Beijing, China, pp. 207–212, 1999.

    Google Scholar 

  7. J. Li, H. O. Wang, D. Niemann, K. Tanaka. Dynamic parallel distributed compensation for Takagi-Sugeno fuzzy systems: An LMI approach. Information Sciences, vol. 123, no. 3–4, pp. 201–221, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  8. K. Mohamed, M. Chadli, M. Chaabane. Unknown inputs observer for a class of nonlinear uncertain systems: An LMI approach. International Journal of Automation and Computing, vol. 9, no. 3, pp. 331–336, 2012.

    Article  Google Scholar 

  9. H. K. Lam, F. H. F. Leung, P. K. S. Tam. A Linear matrix inequality approach for the control of uncertain fuzzy systems. IEEE Control Systems Magazine, vol. 22, no. 4, pp. 20–25, 2002.

    Article  Google Scholar 

  10. K. Tanaka, H. O. Wang. Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach, Hoboken, USA: Wiley, 2001.

    Book  Google Scholar 

  11. K. Tanaka, M. Sugeno. Stability analysis and design of fuzzy control systems. Fuzzy Sets and Systems, vol. 45, no. 2, pp. 135–156, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Benbrahim, N. Essounbouli, A. Hamzaoui, A. Betta. Adaptive Type-2 fuzzy sliding mode controller for SISO nonlinear systems subject to actuator faults. International Journal of Automation and Computing, vol. 10, no. 4, pp. 335–342, 2013.

    Article  Google Scholar 

  13. J. M. Mendel, R. I. John, F. L. Liu. Interval type-2 fuzzy logic systems made simple. IEEE Transactions on Fuzzy Systems, vol. 14, no. 6, pp. 808–821, 2006.

    Article  Google Scholar 

  14. O. Castillo, N. Cazarez, D. Rico. Intelligent control of dynamic systems using type-2 fuzzy logic and stability issues. International Mathematical Forum, vol. 1, no. 28, pp. 1371–1382, 2006.

    MathSciNet  MATH  Google Scholar 

  15. M. Margaliot, G. Langholz. New Approaches to Fuzzy Modeling and Control: Design and Analysis, Singapore: World Scientific Pub Co. Inc., 2000.

    MATH  Google Scholar 

  16. S. Chopra, R. Mitra, V. Kumar. Reduction of fuzzy rules and membership functions and its application to fuzzy PI and PD type controllers. International Journal of Control, Automation and Systems, vol. 4, no. 4, pp. 438–447, 2006.

    Google Scholar 

  17. M. Zhang, S. S. Hu. Fuzzy control of nonlinear systems with input saturation using multiple model structure. International Computing Innovative Control Express Letters, vol. 2, no. 2, pp. 131–136, 2008.

    Google Scholar 

  18. D. Maravall, C. J. Zhou, J. Alonso. Hybrid fuzzy control of the inverted pendulum via vertical forces. International Journal of Intelligent Systems, vol. 20, no. 2, pp. 195–211, 2005.

    Article  MATH  Google Scholar 

  19. R. J. Lian, B. F. Lin, W. T. Sie. Self-organizing fuzzy control of active suspension systems. International Journal of Systems Science, vol. 36, no. 1, pp. 119–135, 2005.

    Article  Google Scholar 

  20. Y. M. Park, U. C. Moon, K. Y. Lee. A Self-organizing fuzzy logic controller for dynamic systems using a fuzzy autoregressive moving average (FARMA) model. IEEE Transactions on Fuzzy Systems, vol. 3, no. 1, pp. 75–82, 1995.

    Article  Google Scholar 

  21. N. Kanagaraj, P. Sivashanmugam, S. Paramasivam. A fuzzy logic based supervisory hierarchical control scheme for real time pressure control. International Journal of Automation and Computing, vol. 6, no. 1, pp. 88–96, 2009.

    Article  MATH  Google Scholar 

  22. Z. Salim, F. Salim, Y. F. Huo. A time-varying fuzzy sets as functions of the error. International Journal of Innovative Computing, Information and Control, vol. 6, no. 12, pp. 5709–5723, 2010.

    Google Scholar 

  23. Z. Salim, F. Salim. Time-varying fuzzy sets in adaptive control. In Proceedings of the 14th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering, IEEE, Sousse, Tunisia, pp. 6–13, 2015.

    Google Scholar 

  24. P. A. Phan, T. J. Gale. Direct adaptive fuzzy control with a self structuring algorithm. Fuzzy Sets and Systems, vol. 159, no. 8, pp. 871–899, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  25. X. Li, X. P. Zhao, J. Chen. Controller design for electric power steering system using T-S fuzzy model approach. International Journal of Automation and Computing, vol.6, no. 2, pp. 198–203, 2009.

    Article  Google Scholar 

  26. K. Tanaka, T. Taniguchi, H. O. Wang. Model-based fuzzy control of TORA system: Fuzzy regulator and fuzzy observer design via LMIs that represent decay rate, disturbance rejection, robustness, optimality. In Proceedings of International Conference on Fuzzy Systems, IEEE, Anchorage, USA, pp. 313–318, 1998.

    Google Scholar 

  27. K. Tanaka, T. Ikeda, H. Wang. Design of fuzzy control systems based on relaxed LMI stability conditions. In Proceedings of the 35th IEEE Conference on Decision and Control, IEEE, Kobe, Japan, vol. 1, pp. 598–603, 1996.

    Article  Google Scholar 

  28. S. Jafarzadeh, M. S. Fadali, A. H. Sonbol. Stability analysis and control of discrete type-1 and type-2 TSK fuzzy systems: Part II. control design. IEEE Transactions on Fuzzy Systems, vol. 9, no. 6, pp. 1001–1013, 2011.

    Article  Google Scholar 

  29. D. Q. Zhang, Q. L. Zhang, Y. Zhang. Stabilization of TS fuzzy systems: An SOS approach. International Journal of Innovative Computing, Information and Control, vol.4, no. 9, pp. 2273–2283, 2008.

    Google Scholar 

  30. K. Tanaka, M. Sano. Fuzzy stability criterion of a class nonlinear systems. Information Sciences, vol. 71, no. 1–2, pp. 3–26, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  31. K. Tanaka, T. Ikeda, H. O. Wang. Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: Quadratic stabilizability, H∞ control theory and linear matrix inequalities. IEEE Transactions on Fuzzy Systems, vol. 4, no. 1, pp. 1–13, 1996.

    Article  Google Scholar 

  32. T. Tanaka, T. Ikeda, H. O. Wang. An LMI approach to fuzzy controller designs based on relaxed stability conditions. In Proceedings of the 6th IEEE Conference on Fuzzy Systems, IEEE, Barcelona, Spain, pp. 171–176, 1997.

    Chapter  Google Scholar 

  33. Z. L. Gaing. A particle swarm optimization approach for optimum design of PID controller in AVR system. IEEE Transactions on Energy Conversion, vol. 9, no. 2, pp. 384–391, 2004.

    Article  Google Scholar 

  34. S. Kaitwanidvilai, P. Olranthichachart, I. Ngamroo. PSO based automatic weight selection and fixed structure robust loop shaping control for power system control applications. International Journal of Innovative Computing, Information and Control, vol. 7, no. 4, pp. 1549–1563, 2011.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziani Salim.

Additional information

Recommended by Associate Editor Chandrasekhar Kambhampati

Ziani Salim received the B. Sc., M. Sc. and Ph.D. degrees in control system from the University of Constantine, Algeria in 1996, 2004 and 2010 respectively. Currently, he is a professor in automatic control, Department of Electronics University of Constantine1-Constantine, Algeria. He is a member of Automatic and Robotics Laboratory (LARC) University of Constantine. Since 2011, he is responsible of the specialty in the same department. He is the founder of the International Conference on Electrical Engineering and Control Applications (ICEECA).

His research interests include automatic control (optimization Problem, robust control, adaptive control, fuzzy sets and fuzzy systems, predictive control), embedded system (field programmable gate array (FPGA) & very high description language (VHDL) applications, microcontroller and arduino), the programming of the siemens automate and supervisory control and data acquisition (SCADA) (Step7&WinCC).

ORCID iD: 0000-0001-9176-9533

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salim, Z. New time-varying fuzzy sets based on a PSO midpoint of the universe of discourse. Int. J. Autom. Comput. 13, 392–400 (2016). https://doi.org/10.1007/s11633-016-0988-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11633-016-0988-0

Keywords

Navigation