Advertisement

Design of a two-dimensional recursive filter using the bees algorithm

  • D. T. Pham
  • Ebubekir Koç
Article

Abstract

This paper presents the first application of the bees algorithm to the optimisation of parameters of a two-dimensional (2D) recursive digital filter. The algorithm employs a search technique inspired by the foraging behaviour of honey bees. The results obtained show clear improvement compared to those produced by the widely adopted genetic algorithm (GA).

Keywords

Bees algorithm swarm intelligence optimisation two-dimensional digital filter design 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    V. M. Mladenov, N. E. Mastorakis. Design of two-dimensional recursive filters by using neural networks. IEEE Transactions on Neural Networks, vol. 12, no. 3, pp. 585–590, 2001.CrossRefGoogle Scholar
  2. [2]
    N. E. Mastorakis, I. F. Gonos, M. N. S. Swamy. Design of two-dimensional recursive filters using genetic algorithm. IEEE Transactions on Circuits and Systems — I: Fundamental Theory and Applications, vol. 50, no. 5, pp. 634–639, 2003.CrossRefMathSciNetGoogle Scholar
  3. [3]
    T. Kaczorek. Two-dimensional Linear Systems, Berlin, Germany: Springer-Verlag, 1985.zbMATHGoogle Scholar
  4. [4]
    S. G. Tzafestas. Multidimensional Systems, Techniques and Applications, New York, Marcel Dekker, 1986.zbMATHGoogle Scholar
  5. [5]
    D. T. Pham, A. Ghanbarzadeh, E. Koç, S. Otri, S. Rahim, M. Zaidi. The Bees Algorithm, Technical Report MEC 0501, Manufacturing Engineering Centre, Cardiff University, Cardiff, UK, 2005.Google Scholar
  6. [6]
    D. T. Pham, A. Ghanbarzadeh, E. Koç, S. Otri, S. Rahim, M. Zaidi. The bees algorithm — A novel tool for complex optimisation problems. In Proceedings of the 2nd International Virtual Conference on Innovative Production Machines and Systems, Elsevier, Oxford, pp. 454–459, 2006.Google Scholar
  7. [7]
    D. T. Pham, S. Otri, A. Ghanbarzadeh, E. Koç. Application of the bees algorithm to the training of learning vector quantisation networks for control chart pattern recognition. In Proceedings of Information and Communication Technologies, Syria, pp. 1624–1629, 2006.Google Scholar
  8. [8]
    D. T. Pham, E. Koç, A. Ghanbarzadeh, S. Otri. Optimisation of the weights of multi-layered perceptrons using the bees algorithm. In Proceedings of the 5th International Symposium on Intelligent Manufacturing Systems, Turkey, pp. 38–46, 2006.Google Scholar
  9. [9]
    D. T. Pham, A. Ghanbarzadeh, E. Koç, S. Otri. Application of the bees algorithm to the training of radial basis function networks for control chart pattern recognition. In Proceedings of the 5th CIRP International Seminar on Intelligent Computation in Manufacturing Engineering, Ischia, Italy, pp. 711–716, 2006.Google Scholar
  10. [10]
    D. T. Pham, A. J. Soroka, A. Ghanbarzadeh, E. Koç, S. Otri, M. Packianather. Optimising neural networks for identification of wood defects using the bees algorithm. In Proceedings of IEEE International Conference on Industrial Informatics, IEEE, Singapore, pp. 1346–1351, 2006.Google Scholar
  11. [11]
    D. T. Pham, A. Afify, E. Koç. Manufacturing cell formation using the bees algorithm. In Proceedings of the 3rd International Virtual Conference on Innovative Production Machines and Systems, Elsevier, Oxford, pp. 523–528, 2007.Google Scholar
  12. [12]
    D. T. Pham, E. Koç, J. Y. Lee, J. Phrueksanant. Using the bees algorithm to schedule jobs for a machine. In Proceedings of the 8th International Conference on Laser Metrology, CMM and Machine Tool Performance, Euspen, Cardiff, UK, pp. 430–439, 2007.Google Scholar
  13. [13]
    D. T. Pham, M. Castellani, A. Ghanbarzadeh. Preliminary design using the bees algorithm. In Proceedings of the 8th International Conference on Laser Metrology, CMM and Machine Tool Performance, Euspen, Cardiff, UK, pp. 420–429, 2007.Google Scholar
  14. [14]
    D. T. Pham, S. Otri, A. Afify, M. Mahmuddin, H. Al-Jabbouli. Data clustering using the bees algorithm. In Proceedings of the 40th CIRP International Manufacturing Systems Seminar, Liverpool, UK, 2007.Google Scholar
  15. [15]
    D. T. Pham, A. J. Soroka, E. Koç, A. Ghanbarzadeh, S. Otri. Some applications of the bees algorithm in engineering design and manufacture. In Proceedings of International Conference on Manufacturing Automation, Singapore, pp. 62–70, 2007.Google Scholar
  16. [16]
    D. T. Pham, E Koç. Flowshop sequencing using the bees algorithm. In Proceedings of the 4th Virtual International Conference on Innovative Production Machines and Systems, CRC Press, Whittles, Dunbeath, UK, pp. 409–414, 2008.Google Scholar
  17. [17]
    A. H. Darwish. Enhanced Bees Algorithm with Fuzzy Logic and Kalman Filtering, Ph.D. dissertation, Cardiff University, Cardiff, UK, 2009.Google Scholar
  18. [18]
    K. Von Frisch. Bees: Their Vision, Chemical Senses and Language, Revised Edition, Cornell University Press, 1976.Google Scholar
  19. [19]
    E. Bonabeau, M. Dorigo, G. Theraulaz. Swarm Intelligence: From Natural to Artificial Systems, New York, USA: Oxford University Press, 1999.zbMATHGoogle Scholar
  20. [20]
    T. D. Seeley. The Wisdom of the Hive: The Social Physiology of Honey Bee Colonies, Cambridge, Massachusetts, USA: Harvard University Press, 1996.Google Scholar
  21. [21]
    S. Camazine, J. L. Deneubourg, N. R. Franks, J. Sneyd, G. Theraula, E. Bonabeau. Self-organization in Biological Systems, Princeton, USA: Princeton University Press, 2003.zbMATHGoogle Scholar
  22. [22]
    X. Yang. Engineering optimizations via nature-inspired virtual bee algorithms. In Proceedings of International Work-conference on the Interplay between Natural and Artificial Computation, Lecture Notes in Computer Science, vol. 3562, pp. 317–323, 2005.Google Scholar
  23. [23]
    D. Karaboga, B. Basturk. On the performance of artificial bee colony (ABC) algorithm. Applied Soft Computing, vol. 8, no. 1, pp. 687–697, 2008.CrossRefGoogle Scholar
  24. [24]
    H. Xue, X. Li, H. X. Ma. Random fuzzy chance-constrained programming based on adaptive chaos quantum honey bee algorithm and robustness analysis. International Journal of Automation and Computing, vol. 7, no. 1, pp. 115–122, 2010.CrossRefGoogle Scholar
  25. [25]
    D. H. Wolpert, W. G. Macready. No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 67–82, 1997.CrossRefGoogle Scholar
  26. [26]
    D. Pham, M. Castellani. The bees algorithm: modelling foraging behaviour to solve continuous optimization problems. In Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 223, no. 12, 2919–2238, 2009.CrossRefGoogle Scholar

Copyright information

© Institute of Automation, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Manufacturing Engineering CentreCardiff UniversityCardiffUK

Personalised recommendations