Skip to main content

Discrimination of Acacia seeds at species and subspecies levels using an image analyzer

Abstract

Seeds of Acacia species and subspecies were characterized using an image analyzer and discriminated for the purpose of identification of species, using their seeds. The species considered in the study were Acacia nilotica subsp. indica, A. nilotica subsp. cupressiformis, A. nilotica subsp. tomentosa, A. tortilis subsp. raddiana, A. tortilis subsp. spirocarpa, A. raddiana, A. senegal, A. auriculiformis, A. farnesiana, A. leucophloea, A. mearnsii, A. melanoxylon, A. planifrons and A. mangium. Eight samples each consisting of 25 seeds per species were studied using the image analyzer for physical characteristics of seeds, such as 2D surface area, length, width, perimeter, roundness, aspect ratio and fullness ratio. Discriminant analysis showed that acacias can be discriminated at species and subspecies levels, with 96% accuracy. Exceptions were A. nilotica subsp. tomentosa (75.0%), A. tortilis subsp. spirocarpa (75.0%) and A. raddiana (87.5%) which had relatively low discrimination accuracy. However, discriminant analysis within selected species showed complete recognition of these species except for A. tortilis subsp. spirocarpa, that had still a large overlap with A. leucophloea. The study also revealed that both seed size and shape characteristics were responsible for species discrimination. It can be concluded that rapid analysis of seed size and shape characteristics using image analysis techniques can be used as primary and secondary keys for identification of acacias.

This is a preview of subscription content, access via your institution.

References

  • Anouar F, Mannina MR, Casals ML, Fougereux JA, Demilly D. 2001. Carrot seeds grading using a vision system. Seed Sci Technol, 29: 215–225.

    Google Scholar 

  • Anvarkhah S, Hajeh-Hosseini MK, Davari-Edalat-Panah A, Rashedmohassel MH. 2013. Medicinal plant seed identification using machine vision. Seed Sci Technol, 41(1): 107–120.

    Google Scholar 

  • Bacchetta G, García PE, Grillo O, Mascia F, Venora G. 2011. Seed image analysis provides evidence of taxonomical differentiation within the Lavatera triloba aggregate (Malvaceae). Flora, 206: 468–472.

    Article  Google Scholar 

  • Barker DA, Vuori TA, Myers DG. 1992. The use of slice and aspect ratio parameters for the discrimination of Australian wheat varieties. Plant Var Seeds, 5: 47–52.

    Google Scholar 

  • Brinkkemper O, van der Maaten L, Boon P. 2011. Identification of Myosotis seeds by means of digital image analysis. Veget Hist Archaeobot, 20(5): 435–445.

    Article  Google Scholar 

  • Dell’-Aquila A, van Eck JW, van der Heijden GWAM 2000. The application of image analysis in monitoring the imbibition process of white cabbage (Brassica oleracea L.) seeds. Seed Sci Res, 10: 163–169.

    Article  Google Scholar 

  • Dell’-Aquila A. 2009. Digital imaging information technology applied to seed germination testing: A review. Agron Sustainable Dev, 29(1): 213–221.

    Article  Google Scholar 

  • Doran JC, Turnbull JW, Boland DJ, Gunn BV. 1983. Handbook on Seeds of Dry-zone Acacias. Food and Agriculture Organization, Rome.

    Google Scholar 

  • Farahani L. 2012. Discrimination of some cultivars of durum wheat (Triticum durum Desf.) using image analysis. Int Res J Appl Basic Sci, 3(7): 1375–1380.

    Google Scholar 

  • González-Andrés F, Ortiz JM. 1995. Seed morphology of Cytisophyllum, Cytisus, Chamaecytisus and Genista (Fabaceae: Genisteae) species for characterization. Seed Sci Technol, 23: 289–300.

    Google Scholar 

  • Granitto PM, Verdes PF, Ceccatto HA. 2005. Large-scale investigation of weed seed identification by machine vision. Comput Electr Agric, 47: 15–24.

    Article  Google Scholar 

  • Grillo O, Draper D, Venora G, Martínez-Laborde JB. 2012. Seed image analysis and taxonomy of Diplotaxis DC. (Brassicaceae, Brassiceae). Syst Biodivers, 10(1): 57–70.

    Article  Google Scholar 

  • Grillo O, Miceli C, Venora G. 2011. Computerised image analysis applied to inspection of vetch seeds for varietal identification. Seed Sci Technol, 39(2): 490–500.

    Google Scholar 

  • Jay M, Ferrero F. 1989. An integrated varietal identification approach using modern technology: application to pink carnation varieties. Plant Var Seeds, 2: 63–71.

    Google Scholar 

  • Keefe PD. 1992. A dedicated wheat grain image analyzer. Plant Var Seeds, 5: 27–33.

    Google Scholar 

  • Keefe PD. 1999. Measurement of linseed (Linum usitatissimum L.) seed characters for distinctness, uniformity and stability testing using image analysis. Plant Var Seeds, 12: 79–90.

    Google Scholar 

  • McCormac AC, Keefe PD, Draper SR. 1990. Automated vigour testing of field vegetables using image analysis. Seed Sci Technol, 18: 103–112.

    Google Scholar 

  • Modarres Najafabadi SS, Farahani L. 2012. Shape analysis of common bean (Phaseolus vulgaris L.) seeds using image analysis. Int Res J Appl Basic Sci, 3(8): 1619–1623.

    Google Scholar 

  • Myers DG, Edsall KJ. 1989. The application of image processing techniques to the identification of Australian wheat varieties. Plant Var Seeds, 2: 109–116.

    Google Scholar 

  • Old KM, Vercoe TK, Floyd RB, Wingfield MJ, Roux J, Neser S. 2002. Acacia subsp. FAO/IPGRI technical guidelines for the safe movement of germplasm. No. 20. Food and Agriculture Organization of the United Nations, Rome/International Plant Genetic Resources Institute, Rome.

    Google Scholar 

  • Petersen PEH, Krutz GW. 1992. Automatic identification of weed seeds by colour machine vision. Seed Sci Technol, 20: 193–208.

    Google Scholar 

  • Smykalova I, Grillo O, Bjelkova M, Hybl M, Venora G. 2011. Morpho-colorimetric traits of Pisum seeds measured by an image analysis system. Seed Sci Technol, 39: 612–626.

    Google Scholar 

  • Smykalova I, Grillo O, Bjelkova M, Pavelek M, Venora G. 2013. Phenotypic evaluation of flax seeds by image analysis. Ind Crops Prod, 47: 232–238.

    Article  Google Scholar 

  • Tigabu M, Oden PC, Lindgren D. 2005. Identification of seed sources and parents of Pinus sylvestris L. using visible-near infrared reflectance spectra and multivariate analysis. Trees, 19: 468–476.

    Article  Google Scholar 

  • Travis AJ, Draper SR. 1985. A computer based system for recognition of seed shape. Seed Sci Technol, 13: 813–820.

    Google Scholar 

  • Wrigley CW, Autran JC, Bushuk W. 1982. Identification of cereal varieties by gel electrophoresis of the grain proteins. Adv Cereal Sci Technol, 5: 211–259.

    CAS  Google Scholar 

  • Zayas I, Pomeranz Y, Lai FS. 1989. Discrimination of wheat and nonwheat components in grain samples by image analysis. Cereal Chem, 66: 233–237.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Tigabu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sivakumar, V., Anandalakshmi, R., Warrier, R.R. et al. Discrimination of Acacia seeds at species and subspecies levels using an image analyzer. For. Sci. Pract. 15, 253–260 (2013). https://doi.org/10.1007/s11632-013-0414-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11632-013-0414-4

Keywords

  • Acacia
  • image analyzer
  • discriminant analysis
  • seed identification