Skip to main content
Log in

The abundance, distribution, and enrichment mechanism of harmful trace elements in coals from Guizhou, Southwestern China

  • Original Article
  • Published:
Acta Geochimica Aims and scope Submit manuscript

Abstract

Coal seams can enrich a variety of harmful trace elements under specific geological conditions. The spatial distribution of harmful trace elements in coal is extremely uneven, and the distribution characteristics of each element content are different. The harmful elements released in the process of coal mining and utilization will cause serious harm to the environment and the human body. It is of great resource significance to study the geochemistry of coal that affects the enrichment and distribution characteristics of harmful trace elements. Based on the domestic and foreign literature on coal geochemistry in Guizhou published by previous investigators, this study counted 1097 sample data from 23 major coal-producing counties in Guizhou Province, systematically summarized the relevant research results of harmful trace elements in the coal of Guizhou, and revealed the overall distribution and enrichment characteristics of harmful trace elements in the coal of Guizhou. The results show that the average contents of Cd, Pb, Se, Cu, Mo, U, V, As, Hg, and Cr in coal of Guizhou are higher than those in Chinese coal and world coal. A variety of harmful trace elements in the coal of Guizhou have high background values, especially in Liupanshui, Xingyi and Qianbei coalfield. The enrichment of various harmful trace elements in the Late Permian coal in Guizhou is mainly related to the combined action of various geological and geochemical factors. The supply of terrigenous debris and sedimentary environment may be the basic background of the enrichment of harmful elements in western Guizhou, while low-temperature hydrothermal activity and volcanic ash deposition may be the main reasons for the enrichment of harmful elements in southwestern Guizhou.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Bai YF (2004) Experimental study on the distribution and occurrence characteristics and migration law of trace elements in Chinese coal. Doctoral Dissertation, General Research Institute of Coal Science, Beijing

  • Cao QY, Ren WY, Liang CM, Zhang YF, Yang L (2022) Spatial distribution of harmful trace elements in Chinese coals. Coal Geol Explor 50(5):13–22 (in Chinese with English abstract)

    Google Scholar 

  • Chen GZ, Wang XM, Wang RW, Liu GJ (2018) Health risk assessment of potentially harmful elements in subsidence water bodies using a Monte Carlo approach: An example from the Huainan coal mining area, China. Ecotoxicol Environ Saf 171:737–745. https://doi.org/10.1016/j.ecoenv.2018.12.101

    Article  CAS  Google Scholar 

  • Cheng W, Zhang Q, Yang RD, Cui YC, Gao JB (2013) Distribution characteristics, occurrence modes and controlling factors of trace elements in Late Permian coal from Bijie City, Guizhou Province. J China Coal Soc 38(1):103–113 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Cheng W, Zhang Q, Yang RD (2015) Distribution characteristics, enrichment genesis and cleaning potentials of trace elements in Late Permian coal from Liupanshui Coalfield, SW China. Guiyang: Guizhou science and technology press, 1–127 (in Chinese with English abstract)

  • Chou CL (2006) Geochemistry of sulfur and hazardous trace elements in coals and its bearing on human health. Chin J Geochem 25(1):21. https://doi.org/10.1007/BF02839774

    Article  Google Scholar 

  • da Silva Júnior FMR, Ramires PF, dos Santos M, Seus ER, Flores Soares MCF, Muccillo-Baisch AL, Mirlean NP, Martins Baisch PR (2019) Distribution of potentially harmful elements in soils around a large coal-fired power plant. Environ Geochem Health 4:2131–2143. https://doi.org/10.1007/s10653-019-00267-w

    Article  CAS  Google Scholar 

  • Dai SF, Ren DY, Hou XQ, Shao LY (2003) Geochemical and mineralogical anomalies of the Late Permian coal in the Zhijin coalfield of southwest China and their volcanic origin. Int J Coal Geol 55(2):117–138. https://doi.org/10.1016/S0166-5162(03)00083-1

    Article  CAS  Google Scholar 

  • Dai SF, Li DH, Ren DY, Tang YG, Shao LY, Song HB (2004) Geochemistry of the Late Permian No. 30 coal seam, Zhijin coalfield of southwest China: Influence of a siliceous low-temperature hydrothermal fluid. Appl Geochem 19:1315–1330. https://doi.org/10.1016/j.apgeochem.2003.12.008

    Article  CAS  Google Scholar 

  • Dai SF, Chou CL, Yue M, Luo KL, Ren DY (2005a) Mineralogy and geochemistry of a Late Permian coal in Dafang coalfield, Guizhou, China: Influence from siliceous and iron-rich calcic hydrothermal fluids. Int J Coal Geol 61:241–258. https://doi.org/10.1016/j.coal.2004.09.002

    Article  CAS  Google Scholar 

  • Dai SF, Ren DY, Tang YG, Yue M, Hao LM (2005b) Concentration and distribution of elements in Late Permian coals from western Guizhou Province, China. Int J Coal Geol 61:119–137. https://doi.org/10.1016/j.coal.2004.07.003

    Article  CAS  Google Scholar 

  • Dai SF, Zeng RS, Sun YZ (2006) Enrichment of arsenic, antimony, mercury, and thallium in a Late Permian anthracite from Xingren, Guizhou, Southwest China. Int J Coal Geol 66(3):217–226. https://doi.org/10.1016/j.coal.2005.09.001

    Article  CAS  Google Scholar 

  • Dai SF, Ren DT, Zhou YP, Chou CL, Wang XB, Zhao L, Zhu XW (2008) Mineralogy and geochemistry of a superhigh-organic-sulfur coal, Yanshan Coalfield, Yunnan, China: Evidence for a volcanic ash component and influence by submarine exhalation. Chem Geol 255(1–2):182–194. https://doi.org/10.1016/j.chemgeo.2008.06.030

    Article  CAS  Google Scholar 

  • Dai SF, Zhou Y, Zhang M, Wang X, Wang J, Song X, Ren DY (2010) A new type of Nb(Ta)-Zr(Hf)-REE-Ga polymetallic deposit in the Late Permian coal-bearing strata, eastern Yunnan, southwestern China: Possible economic significance and genetic implications. Int J Coal Geol 83:55–63. https://doi.org/10.1016/j.coal.2010.04.002

    Article  CAS  Google Scholar 

  • Dai SF, Ren DY, Chou CL, Finkelman BR, Seredin VV, Zhou YP (2012a) Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization. Int J Coal Geol 94:3–21. https://doi.org/10.1016/j.coal.2011.02.003

    Article  CAS  Google Scholar 

  • Dai SF, Wang XB, Seredin VV, Hower JC, Colin R, Ward CR, O’Keefe JMK, Huang WH, Li T, Li X, Liu HD, Xue WF, Zhao LX (2012b) Petrology, mineralogy, and geochemistry of the Ge-rich coal from the Wulantuga Ge ore deposit, Inner Mongolia, China: New data and genetic implications. Int J Coal Geol 90–91:72–99. https://doi.org/10.1016/j.coal.2011.10.012

    Article  CAS  Google Scholar 

  • Dai SF, Wang PP, Ward RC, Tang YG, Song XL, Jiang JH, James C, Hower CJ, Li T, Seredin VV, Wagner JN, Jiang YJ, Wang XB, Liu JJ (2015) Elemental and mineralogical anomalies in the coal-hosted Ge ore deposit of Lincang, Yunnan, southwestern China: Key role of N2–CO2-mixed hydrothermal solutions. Int J Coal Geol 152:19–46. https://doi.org/10.1016/j.coal.2014.11.006

    Article  CAS  Google Scholar 

  • Dennis F, Kalf DF, Crommentuijn T, van de Plassche EJ (1997) Environmental quality objectives for 10 polycyclic aromatic hydrocarbons (PAHs). Ecotoxicol Environ Saf 36(1):89–97. https://doi.org/10.1006/eesa.1996.1495

    Article  Google Scholar 

  • Gao JW, Wei BG, Xue Y, Yu JP, Yang LS (2013) Research progress on health risk of environmental arsenic exposure in endemic arsenism areas. Asian J Ecotoxicol 8(2):138–147 (in Chinese with English abstract).

    Google Scholar 

  • Guo JY, Wu HC, Zhao ZQ, Wang JF, Liao HQ (2021) Review on health impacts from domestic coal burning: Emphasis on endemic fluorosis in Guizhou Province, Southwest China. Rev Environ Contam Toxicol 258:1–25. https://doi.org/10.1007/398_2021_71

    Article  CAS  Google Scholar 

  • He JF, Hong P, Tan MM, Duan CL, Zhou EH (2017) Trace element concentration and reduction of typical Chinese bituminous coals via dry physical separation techniques. Fuel 199:662–669. https://doi.org/10.1016/j.fuel.2017.03.036

    Article  CAS  Google Scholar 

  • He JF, Yao QY, Zhang MM, Yang B, Zhu LT, Chen H, Zhang X (2023) Study on integration of drying and separation for lignite by hot airflow gas–solid fluidized bed. Fuel 341:127557. https://doi.org/10.1016/j.fuel.2023.127557

    Article  CAS  Google Scholar 

  • Hussain R, Luo KL, Chao Z, Zhao XF (2018) Trace elements concentration and distributions in coal and coal mining wastes and their environmental and health impacts in Shaanxi. China Environ Sci Pollut Res 25:19566–19584. https://doi.org/10.1007/s11356-018-2148-2

    Article  CAS  Google Scholar 

  • Izquierdo M, Querol X (2011) Leaching behaviour of elements from coal combustion fly ash: An overview. Int J Coal Geol 94:54–66. https://doi.org/10.1016/j.coal.2011.10.006

    Article  CAS  Google Scholar 

  • Ketris MP, Yudovich YE (2009) Estimations of Clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals. Int J Coal Geol 78(2):135–148. https://doi.org/10.1016/j.coal.2009.01.002

    Article  CAS  Google Scholar 

  • Kiss G, Varga-Puchony Z, Rohrbacher G, Hlavay J (1998) Distribution of polycyclic aromatic hydrocarbons on atmospheric aerosol particles of different sizes. Atmos Res 46(3–4):253–261. https://doi.org/10.1016/S0169-8095(97)00067-7

    Article  CAS  Google Scholar 

  • Leite GAS, Sawan RMM, Teófilo JM, Porto IM, Sousa FB, Gerlach RF (2011) Exposure to lead exacerbates dental fluorosis. Arch Oral Biol 56(7):695–702. https://doi.org/10.1016/j.archoralbio.2010.12.011

    Article  CAS  Google Scholar 

  • Li DH, Tang YG, Chen K, Liu D, Cheng FP, Deng T (2005) Mineralogy and its geological origin of the K6 coal seam from the Qinglong coalfield, Guizhou Province. J China Coal Soc 30(1):49–52 (in Chinese with English abstract).

    CAS  Google Scholar 

  • Li WW, Tang YG, Dai SF (2006) Fluoride exposure in the endemic fluorosis area of Guizhou. China Chin J Geochem 25(1):70. https://doi.org/10.1007/BF02839870

    Article  CAS  Google Scholar 

  • Li FC, Yang Y, Yan SL, Luo Y, Qin AN (2009) Discussion on the relationship between the degree of dental fluorosis and urinary fluoride content and the value of urinary fluoride monitoring in primary school students in Guizhou coal-fired fluorosis area. Modern Prevent Med 36(20):3865–3867 (In Chinese with English abstract).

    CAS  Google Scholar 

  • Li CH, Liang HD, Wang SK, Liu JG (2018) Study of harmful trace elements and rare earth elements in the Permian tectonically deformed coals from Lugou Mine, North China Coal Basin, China. J Geochem Explor 190:10–25. https://doi.org/10.1016/j.gexplo.2018.02.016

    Article  CAS  Google Scholar 

  • Li DY, Tang X, Feng SS (2021) Humidity-control assists high-efficient coal fly ash removal by PTFE membrane. Chin J Chem Eng 40:88–95. https://doi.org/10.1016/j.cjche.2021.05.017

    Article  CAS  Google Scholar 

  • Li S, Gao XL, Zhu SQ, Liang HD (2023) Polycyclic aromatic hydrocarbons (PAHs) in coal preparation plant products: A contributor to environmental pollution. Sci Total Environ 906:167887. https://doi.org/10.1016/j.scitotenv.2023.167887

    Article  CAS  Google Scholar 

  • Liu GJ, Peng ZC, Yang PY, Gui HR, Wang GL (2001a) Characteristics of coal ashes in Yanzhou mining district and distribution of trace elements in them. Chin J Geochem 20:357. https://doi.org/10.1007/BF03166861

    Article  CAS  Google Scholar 

  • Liu GJ, Peng ZC, Yang PY, Wang GL, Song C (2001b) Changes of trace elements in coal during combustion. J Fuel Chem 29:119–123 (in Chinese with English abstract).

    CAS  Google Scholar 

  • Liu P, Li S, Shi CL, Zhang JC, Han X, Chen ZG (2015) Purifying hazardous elements in Yiluo fine coal by dry high-gradient magnetic separation. Energy Sour, Part a: Recover Utiliz Environ Eff 38(18):2664–2669. https://doi.org/10.1080/15567036.2015.1110647

    Article  CAS  Google Scholar 

  • Liu JJ, Song HJ, Dai SF, Nechaev VP, Graham IT, French D, Nechaeva EV (2019) Mineralization of REE-Y-Nb-Ta-Zr-Hf in Wuchiapingian coals from the Liupanshui Coalfield, Guizhou, southwestern China: Geochemical evidence for terrigenous input. Ore Geol Rev 115:103190. https://doi.org/10.1016/j.oregeorev.2019.103190

    Article  Google Scholar 

  • Liu JJ, Nechaev VP, Dai SF, Song HJ, Evgeniya V, Nechaeva EV, Jiang YF, Graham IT, French D, Yang P, Hower JC (2020) Evidence for multiple sources for inorganic components in the Tucheng coal deposit, western Guizhou, China and the lack of critical-elements. Int J Coal Geol 223:103468. https://doi.org/10.1016/j.coal.2020.103468

    Article  CAS  Google Scholar 

  • Liu JJ, Han QC, Zhao SM, Jia RK (2022) The sources of abnormally enriched critical metals in the Late Permian coals of Western Guizhou Province. J China Coal Soc 47(5):1782–1794 (in Chinese with English abstract).

    Google Scholar 

  • Luo KL, Li L, Zhang SX, Bi SG, Li W, Zhao F, Chen Q (2011) Pathways causing the disease of coal-burning fluorosis in southwest China. J Hygiene Res 40(4):474–477.

    Google Scholar 

  • Ma DY, Jia SY, Hu ZF, Wang XB, Li LY, Tan HZ, Zia ur Rahman (2022) Experimental investigation of water washing effect on high-chlorine coal properties. Fuel 319:123838. https://doi.org/10.1016/j.fuel.2022.123838

    Article  CAS  Google Scholar 

  • Mo QX, Du ML, Wang SL, Liu J, Yang JL, Shang HT (2012) Occurrence and cleaning potential of trace harmful elements in Huanglong coal. J X’ian University Sci Technol 32(2):214–220 (in Chinese with English abstract).

    CAS  Google Scholar 

  • Nechaev VP, Bechtel A, Dai SF, Chekryzhov IY, Pavlyutkin BI, Vysotskiy SV, Ignatiev AV, Velivetskaya TA, Guo WM, Tarasenko IA, Nechaeva EV, French D, Hower JC (2020) Bio-geochemical evolution and critical element mineralization in the Cretaceous-Cenozoic coals from the southern Far East Russia and northeastern China. Appl Geochem 117:104602. https://doi.org/10.1016/j.apgeochem.2020.104602

    Article  CAS  Google Scholar 

  • Ng JC, Wang JP, Shraim A (2003) A global health problem caused by arsenic from natural sources. Chemosphere 52(9):1353–1359. https://doi.org/10.1016/S0045-6535(03)00470-3

    Article  CAS  Google Scholar 

  • Nie AG, Long JP (1996) Study on the source of arsenic (As) in high-arsenic coal and its poisoning pathway in southwestern Guizhou. Guizhou Env Prot Sci Technol 4:25–28 (In Chinese with English abstract)

    Google Scholar 

  • Nie AG, Xie H (2004) Research on origin between Emei Mountain Basalt Magma and high-As coal in Guizhou. Coal Geol Explor 1:8–10 (in Chinese with English abstract).

    Google Scholar 

  • Ohenoja K, Körkkö M, Wigren V, Österbacka J, Illikainen M (2017) Fly ash classification efficiency of electrostatic precipitators in fluidized bed combustion of peat, wood, and forest residues. J Environ Manage 206:607–614. https://doi.org/10.1016/j.jenvman.2017.10.047

    Article  CAS  Google Scholar 

  • Park H, Wang LG, Yun JH (2021) Coal beneficiation technology to reduce hazardous heavy metals in fly ash. J Hazard Mater 416:125853. https://doi.org/10.1016/j.jhazmat.2021.125853

    Article  CAS  Google Scholar 

  • Qi LQ, Yao Y, Han TY, Li JT (2019) Research on the electrostatic characteristic of coal-fired fly ash. Environ Sci Pollut Res 26:7123–7131. https://doi.org/10.1007/s11356-019-04166-6

    Article  CAS  Google Scholar 

  • Ren DY, Zhao FH, Zhang JY, Xu DW (1999) Preliminary study on genetic types of enrichment of harmful trace elements in coal. Geol Front 6:17–22 (in Chinese with English abstract)

    Google Scholar 

  • Ren DY, Zhao FH, Dai SF (2006) Trace element geochemistry of coal. Science Press, Beijing (in Chinese with English abstract).

    Google Scholar 

  • Rodwihok C, Suwannakaew M, Han SW, Lim YJ, Park SY, Woo SW, Choe JW, Wongratanaphisan D, Kim HS (2023) Effective removal of hazardous organic contaminant using integrated photocatalytic adsorbents: Ternary zinc oxide/zeolite-coal fly ash/reduced graphene oxide nanocomposites. Colloids Surf, A 662:131044. https://doi.org/10.1016/j.colsurfa.2023.131044

    Article  CAS  Google Scholar 

  • Shao LY, Liu HM, Tian BL, Zhang PF (1998) Sedimentary evolution and coal accumulation of Late Permian in upper Yangtze region. According Sedimentol J 2:55–60 (in Chinese with English abstract).

    Google Scholar 

  • Tian HZ, Lu L, Hao JM, Gao JJ, Cheng K, Liu KY, Qiu PP, Zhu CY (2013a) A review of key hazardous trace elements in Chinese coals: Abundance, occurrence, behavior during coal combustion and their environmental impacts. Energy Fuels 27:601–614. https://doi.org/10.1021/ef3017305

    Article  CAS  Google Scholar 

  • Tong D, Zhang Q, Liu F, Geng GN, Zheng YX, XueT HCP, Wu RL, Qin Y, Zhao HY, Yan L, He KB (2018) Current emissions and future mitigation pathways of coal-fired power plants in china from 2010 to 2030. Environ Sci Technol 52(21):12905–12914. https://doi.org/10.1021/acs.est.8b02919

    Article  CAS  Google Scholar 

  • Vejahati F, Xu ZH, Gupta R (2010) Trace elements in coal: Associations with coal and minerals and their behavior during coal utilization-A review. Fuel 89(4):904–911. https://doi.org/10.1016/j.fuel.2009.06.013

    Article  CAS  Google Scholar 

  • Wang BB, Zheng BS (2006) Relationship between fluorine content in drinking water and oral health in some big cities in China. Chin J Geochem 25(l1):80. https://doi.org/10.1007/BF02839890

    Article  CAS  Google Scholar 

  • Wang G, Deng JG, Zhang Y, Zhang Q, Duan L, Hao JM, Jiang JK (2020a) Air pollutant emissions from coal-fired power plants in China over the past two decades. Sci Total Environ 741:140326. https://doi.org/10.1016/j.scitotenv.2020.140326

    Article  CAS  Google Scholar 

  • Wang W, Wang XQ, Chi QH, Wu H, Zhang BM, Xu SF, Han ZX, Nie LS, Liu HL, Liu DS, Hu QH, Mi M, Liu XM, Cheng XB (2020b) Geochemical characteristics of fluorine (F) in mainland China’s pedosphere: On the basis of the China Geochemical Baselines project. J Geochem Explor 219:106635. https://doi.org/10.1016/j.gexplo.2020.106635

    Article  CAS  Google Scholar 

  • Wang DZ, Zhu DQ, Pan J, Guo ZQ, Yang CC, Tian HY, Xue YX (2022) Integration of preparation of K, Na-embedded activated carbon and reduction of Zn-bearing dusts. Int J Min Sci Technol 32(3):627–636. https://doi.org/10.1016/j.ijmst.2022.03.003

    Article  CAS  Google Scholar 

  • Wang SY, Ye D, Liu X, Wang HN, Ma W, Liu H (2023) Mn-Cr mixed oxide adsorbents with high SO2 resistance for elemental mercury removal from coal-fired flue gas. J Ind Eng Chem 123:260–271. https://doi.org/10.1016/j.jiec.2023.03.041

    Article  CAS  Google Scholar 

  • Wang H (2011) Sedimentological characteristics and paleoenvironmental significance of Late Permian coal in eastern Yunnan-western Guizhou. Doctoral Dissertation, China University of Mining and Technology (Beijing).

  • Wang R (2011) Study on occurrence and distribution of Au in the coals and its enrichment mechanism in Western Guizhou Province, China. Doctoral Dissertation, China University of Mining and Technology.

  • Wei Q, Dai SF (2020) Key metals and harmful elements in coal-type germanium deposits in China: Occurrence characteristics and enrichment genesis. J China Coal Soc 45(1):296–303 (in Chinese with English abstract).

    Google Scholar 

  • Wu XL, Liu WB, Gao HF, Alfaro D, Sun SR, Lei RR, Jia TQ, Zheng MH (2021) Coordinated effects of air pollution control devices on PAH emissions in coal-fired power plants and industrial boilers. Sci Total Environ 756:144063. https://doi.org/10.1016/j.scitotenv.2020.144063

    Article  CAS  Google Scholar 

  • Xiao L, Xu YG, Mei HJ, Zheng YF, He B, Franco P (2004) Distinct mantle sources of low-Ti and high-Ti basalts from the western Emeishan large igneous province, SW China: Implications for plume–lithosphere interaction. Earth Planetary Sci Lett 228(3):525–546. https://doi.org/10.1016/j.epsl.2004.10.002

    Article  CAS  Google Scholar 

  • Xie PP, Zhang SY, Wang L, Xu YG (2017) Geochemical characteristics of the Late Permian coals from the Yueliangtian Coalfield, western Guizhou, southwestern China. Arab J Geosci 10(5):1–15. https://doi.org/10.1007/s12517-017-2916-1

    Article  CAS  Google Scholar 

  • Xu BB, He MD (2003) Guizhou Coal Geology. China University of Mining and Technology Press, Xuzhou (in Chinese with English abstract).

    Google Scholar 

  • Xu ZF, Liu CQ (2007) Chemical weathering in the upper reaches of Xijiang River draining the Yunnan-Guizhou Plateau. Southwest China Chem Geol 239(1–2):83–95. https://doi.org/10.1016/j.chemgeo.2006.12.008

    Article  CAS  Google Scholar 

  • Yang LJ (2020) Analysis of vertical distribution characteristics of trace elements in Yudai coal mine. Wuchuan of Guizhou Metall Mater 40(3):28–29 (in Chinese with English abstract).

    CAS  Google Scholar 

  • Yang ZJ, Tang YG, Zheng X, Li JJ, Han WL, Yang ST (2006) Enrichment of arsenic, antimony, thallium and selenium in high-arsenic coal from Xingren County. Guizhou Province Chin J Geochem 25(1):50. https://doi.org/10.1007/BF02839832

    Article  Google Scholar 

  • Yang RD, Liu L, Wei HR, Cui YC, Cheng W (2011) Geochemical characteristics of Guizhou Permian coal measure strata and analysis of the control factors. J Coal Sci Eng 17:55–68. https://doi.org/10.1007/s12404-011-0112-6

    Article  CAS  Google Scholar 

  • Yang JL, Tu CL, Jiang Q, Wang JY, Li LB, Finkelman RB (2023) Analysis of multiple pathways and levels of fluoride intake in fluorosis areas of Southwest China. Heliyon 9(3):13651. https://doi.org/10.1016/j.heliyon.2023.e13651

    Article  CAS  Google Scholar 

  • Yang B, Zhu LT, He JF, Liu B, Huang SB, Chen H, Tang WJ (2024) Cleaning and upgrading of low-rank coal using a novel rotary triboelectric separator with the polyvinyl chloride as friction medium. Fuel 360:130513. https://doi.org/10.1016/j.fuel.2023.130513

    Article  CAS  Google Scholar 

  • Yang RD (1989) Late Permian lithofacies palaeogeography and coal accumulation environment in Guizhou. Dissertation, Guizhou Institute of Technology (in Chinese with English abstract).

  • Yuan QX, Zhang YS, Wang T, Wang JW, Romero CE (2021) Mechanochemical stabilization of heavy metals in fly ash from coal-fired power plants via dry milling and wet milling. Waste Manag 135:428–436. https://doi.org/10.1016/j.wasman.2021.09.029

    Article  CAS  Google Scholar 

  • Zhang JY, Ren DY, Zheng CG, Zeng RS, Chou CL, Liu J (2002) Trace element abundances in major minerals of Late Permian coals from southwestern Guizhou Province, China. Int J Coal Geol 53:55–64. https://doi.org/10.1016/S0166-5162(02)00164-7

    Article  CAS  Google Scholar 

  • Zhang JY, Ren DY, Zhu YM, Chou CL, Zeng RS, Zheng BS (2004) Mineral matter and potentially hazardous trace elements in coals from Qianxi Fault Depression Area in southwestern Guizhou, China. Int J Coal Geol 57:49–61. https://doi.org/10.1016/j.coal.2003.07.001

    Article  CAS  Google Scholar 

  • Zhang AH, Feng H, Yang GH, Pan XL, Jiang XY, Huang XX, Dong XX, Yang DP, Xie YX, Peng L, Jun L, Hu CJ, Li JL, Wang XL (2007) Unventilated indoor coal-fired stoves in Guizhou province, China: cellular and genetic damage in villagers exposed to arsenic in food and air. Environ Health Perspect 115(4):653–658. https://doi.org/10.1289/ehp.9272

    Article  CAS  Google Scholar 

  • Zhang YY, Tian JJ, Feng S, Yang F, Lu XY (2018) The occurrence modes and geologic origins of arsenic in coal from Santanghu Coalfield. Xinjiang J Geochem Explor 186:225–234. https://doi.org/10.1016/j.gexplo.2017.12.006

    Article  CAS  Google Scholar 

  • Zhang WB, He B, Tao G, Zhao F, Wang NZ, Yang Z, Zhang ZX, Sun PY (2020a) Geochemical characteristics and accumulation rules of, coal in the Upper Permian Longtan Formation of Xinren area. North Guizhou Northwestern Geol 53(4):51–65 (in Chinese with English abstract).

    CAS  Google Scholar 

  • Zhang ZX, Yan GH, Zhu GQ, Zhao PF, Ma ZJ, Zhang B (2020b) Using microwave pretreatment to improve the high-gradient magnetic-separation desulfurization of pulverized coal before combustion. Fuel 274:117826. https://doi.org/10.1016/j.fuel.2020.11782

    Article  CAS  Google Scholar 

  • Zhang Y, Cheng W, Yang RD, Yang B, Lv F, Luo QK, Xu YY (2023) A review on the abnormal enrichment of some metals in coals from Guizhou. Geol Rev. 69(1):247–265 (in Chinese with English abstract).

    CAS  Google Scholar 

  • Zhang X, Zhang BW, Zhang QL, Wu J, Ye LY, Li S, Ling Y, Luo GQ, Yao H, Wu B (2024) Fe-Ni bimetallic adsorbent for efficient As2O3 removal from coal-fired flue gas under a wide temperature range: Experimental and DFT study. Fuel 357:129803. https://doi.org/10.1016/j.fuel.2023.129803

    Article  CAS  Google Scholar 

  • Zhao C, Luo KL (2017) Sulfur, arsenic, fluorine and mercury emissions resulting from coal-washing byproducts: A critical component of China’s emission inventory. Atmos Environ 152:270–278. https://doi.org/10.1016/j.atmosenv.2016.12.001

    Article  CAS  Google Scholar 

  • Zheng BH, Wu DS, Wang BB, Wang MS, Liu XJ, Wang AM, Xiao GS, Liu PG, Finkelman RB (2006) Clay with high fluorine and endemic fluorosis caused by indoor combustion of coal in southwestern China. Chin J Geochem 25(1):79–80. https://doi.org/10.1007/BF02839889

    Article  Google Scholar 

  • Zhou HC (2006) Study on the distribution of PAHs in fly ash from coal and residual char combustion in a pressurized fluidized bed. Chin J Geochem 25(1):54–55. https://doi.org/10.1007/BF02839840

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by National Natural Science Foundation of China (No. 51964009).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: H.H. (Hui Hou) and W.C. (Wei Cheng); methodology: H.H., W.C. and R.Y. (Ruidong Yang); funding acquisition: W.C.; Resources, W.C. and R.Y.; data collection: H.H. and Y.Z. (Yan Zhang); formal analysis: H.H. and W.C.; visualization: H.H. and Y.Z.; writing original draft: H.H. and W.C.; writing review & editing: H.H. and W.C.; project administration: W.C.; supervision: W.C. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Wei Cheng.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, and there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of the manuscript.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 134 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, H., Cheng, W., Yang, R. et al. The abundance, distribution, and enrichment mechanism of harmful trace elements in coals from Guizhou, Southwestern China. Acta Geochim (2024). https://doi.org/10.1007/s11631-024-00694-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11631-024-00694-2

Keywords

Navigation