Skip to main content
Log in

Nuclear volume effects in kinetic isotope fractionation: A case study of mercury oxidation by chlorine species

  • Original Article
  • Published:
Acta Geochimica Aims and scope Submit manuscript

Abstract

It is well-known that the equilibrium isotope fractionation of mercury (Hg) includes classical mass-dependent fractionations (MDFs) and nuclear volume effect (NVE) induced mass-independent fractionations (MIFs). However, the effect of the NVE on these kinetic processes is not known. The total fractionations (MDFs + NVE-induced MIFs) of several representative Hg-incorporated substances were selected and calculated with ab initio calculations in this work for both equilibrium and kinetic processes. NVE-induced MIFs were calculated with scaled contact electron densities at the nucleus through systematic evaluations of their accuracy and errors using the Gaussian09 and DIRAC19 packages (named the electron density scaling method). Additionally, the NVE-induced kinetic isotope effect (KIE) of Hg isotopes are also calculated with this method for several representative Hg oxidation reactions by chlorine species. Total KIEs for 202Hg/198Hg ranging from − 2.27‰ to 0.96‰ are obtained. Three anomalous 202Hg-enriched KIEs (δ202Hg/198Hg = 0.83‰, 0.94‰, and 0.96‰,) caused by the NVE are observed, which are quite different from the classical view (i.e., light isotopes react faster than the heavy ones). The electron density scaling method we developed in this study can provide an easier way to calculate the NVE-induced KIEs for heavy isotopes and serve to better understand the fractionation mechanisms of mercury isotope systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data and models used during the study appear in the submitted article.

Code availability

N/A.

References

  • Almoukhalalati A, Shee A, Saue T (2016) Nuclear size effects in vibrational spectra. Phys Chem Chem Phys. 18:15406–15417.

    Article  CAS  Google Scholar 

  • Angeli I (2004) A consistent set of nuclear rms charge radii: Properties of the radius surface R(N, Z). Atom Data Nucl Data Tables. 87:185–206.

    Article  CAS  Google Scholar 

  • Angeli I, Marinova KP (2013) Table of experimental nuclear ground state charge radii: An update. Atom Data Nucl Data Tables. 99(1):69–95.

    Article  CAS  Google Scholar 

  • Aufmuth P, Heilig K, Steudel A (1987) Changes in mean-square nuclear charge radii from optical isotope shifts. Atom Data Nucl Data Tables. 37:455–490.

    Article  CAS  Google Scholar 

  • Barysz M, Sadlej AJ (2001) Two-component methods of relativistic quantum chemistry: from the Douglas-Kroll approximation to the exact two-component formalism. J Mol Struct. 573:181–200.

    Article  CAS  Google Scholar 

  • Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys. 98:5648–5652.

    Article  CAS  Google Scholar 

  • Bergquist BA, Blum JD (2007) Mass-dependent and -independent fractionation of Hg isotopes by photoreduction in aquatic systems. Science. 318:417–420.

    Article  CAS  Google Scholar 

  • Bergquist BA, Blum JD (2009) The odds and evens of mercury isotopes: Applications of mass-dependent and mass-independent isotope fractionation. Elements. 5(6):53–357.

    Article  Google Scholar 

  • Bigeleisen J (1996) Nuclear size and shape effects in chemical reactions. Isotope chemistry of the heavy elements. J Am Chem Soc. 118:3676–3680.

    Article  CAS  Google Scholar 

  • Bigeleisen J, Mayer MG (1947) Calculation of equilibrium constants for isotopic exchange reactions. J Chem Phys. 15:261–267.

    Article  CAS  Google Scholar 

  • Bigeleisen J, Wolfsberg M (1958) Theoretical and experimental aspects of isotope effects in chemical kinetics. Adv Chem Phys. 1:15–76.

    CAS  Google Scholar 

  • Blum JD (2011) Applications of stable mercury isotopes to biogeochemistry. Handbook of environmental isotope geochemistry, Vol 15. Springer, Cham, pp 229–245.

    Google Scholar 

  • Blum JD, Johnson MW (2017) Recent developments in mercury stable isotope analysis. Rev Min Geochem. 82(1):733–757.

    Article  CAS  Google Scholar 

  • Blum JD, Sherman LS, Johnson MW (2014) Mercury isotopes in Earth and environmental sciences. Ann Rev Earth Planet Sci. 42(1):249–269.

    Article  CAS  Google Scholar 

  • Chen JB, Hintelmann H, Feng XB, Dimock B (2012) Unusual fractionation of both odd and even mercury isotopes in precipitation from Peterborough, ON, Canada. Geochim Cosmochim Acta. 90:33–46.

    Article  CAS  Google Scholar 

  • Dunning TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys. 90:1007–1023.

    Article  CAS  Google Scholar 

  • Dyall KG (2023) Dyall double-zeta, triple-zeta, and quadruple-zeta basis set archive files. Zenodo. https://doi.org/10.5281/zenodo.7606547

  • Dzurko M, Foucher D, Hintelmann H (2009) Determination of compound–specific Hg isotope ratios from transient signals using gas chromatography coupled to multicollector inductively coupled plasma mass spectrometry (MC-ICP/MS). Anal Bioanal Chem. 393(1):345–355.

    Article  CAS  Google Scholar 

  • Estrade N, Carignan J, Sonke JE, Donard OFX (2009) Mercury isotope fractionation during liquid–vapor evaporation experiments. Geochim Cosmochim Acta. 73:2693–2711.

    Article  CAS  Google Scholar 

  • Eyring H (1935) The activated complex in chemical reactions. J Chem Phys. 3:107–115.

    Article  CAS  Google Scholar 

  • Fang T, Liu Y (2019) Equilibrium thallium isotope fractionation and its constraint on Earth’s late veneer. Acta Geochim. 38(4):459–471.

  • Franzke YJ, Spiske L, Pollak P, Weigend F (2020) Segmented contracted error-consistent basis sets of quadruple-ζ valence quality for one- and two-component relativistic all- electron calculations. J Chem Theory Comput. 16:5658–5674.

    Article  CAS  Google Scholar 

  • Fricke G, Heilig K (2004) 80-Hg mercury. Numerical data and functional relationships in science and technology. Group I: Element particles, nuclei and atoms. Nuclear charge radii, Vol 20. Springer, Heidelberg, pp 1–9.

    Google Scholar 

  • Frisch MJ et al (2009) Gaussian software package, Gaussian09, Revision D.01. Inc, Wallingford CT.

    Google Scholar 

  • Fu SL, Hu RZ, Yin RS, Yan J, Mi XF, Song ZC, Sullivan NA (2020) Mercury and in-situ sulfur isotopes as constraints on the metal and sulfur sources for the world’s largest Sb deposit at Xikuangshan, southern China. Min Depos. 55:1353–1364.

    Article  CAS  Google Scholar 

  • Fujii T, Moynier F, Albarède F (2009) The nuclear field shift effect in chemical exchange reactions. Chem Geol. 267:139–156.

    Article  CAS  Google Scholar 

  • Ghosh S, Schauble EA, Couloume GL, Blum JD, Bergquist BA (2013) Estimation of nuclear volume dependent fractionation of mercury isotopes in equilibrium liquid-vapor evaporation experiments. Chem Geol. 336:5–12.

    Article  CAS  Google Scholar 

  • Gomes ASP et al (2019) DIRAC a relativistic ab initio electronic structure program, Release DIRAC19. https://doi.org/10.5281/zenodo.3572669

  • Grimme S (2006) Semiempirical hybrid density functional with perturbative second-order correlation. J Chem Phys. 124:1–16.

    Article  Google Scholar 

  • Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parameterization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J Chem Phys. 132:1–19.

    Article  Google Scholar 

  • King WH (1984) Isotope shifts in atomic spectra. Plenum Press, New York.

    Book  Google Scholar 

  • Li LC, Deng P, Tian AM, Xu MH, Zheng CG, Wong NB (2003) A study on the reaction mechanism and kinetic of mercury oxidation by chlorine species. J Mol Struct. (Theochem) 625:277–281.

    Article  CAS  Google Scholar 

  • Li ZG, Feng XB, He TR, Yan HY, Liang L (2005) Determination of total mercury in soil and sediment by aquaregia digestion in the water bath coupled with cold vapor atom fluorescence spectrometry. Bull Min Pet Geochem. 24(2):140–143.

    CAS  Google Scholar 

  • Li SL, Li LH, Lan YC, Lv BY (2016) Rapid determination of total mercury in sediment by using Lumex analytical equipment. Guangzhou Chem. 41(2):68–71.

    Google Scholar 

  • Lin HL, Zhu RL, Yu L, Cheng YX, Zhu RR, Liu P, Ren ZH (2020) Determination of arsenic, mercury, selenium, antimony and bismuth in soil and sediments by water bath digestion–atomic fluorescence spectrometry. Spectrosc Spect Anal. 40(5):1528–1533.

    CAS  Google Scholar 

  • Liu YF, Qi HW, Bi XW, Hu RZ, Qi LK, Yin RS, Tang YY (2021) Mercury and sulfur isotopic composition of sulfides from sediment–hosted lead–zinc deposits in Lanping basin Southwestern China. Chem Geol. 559:119910.

    Article  CAS  Google Scholar 

  • Lu T, Chen F (2012) Multiwfn: A multifunctional wavefunction analyzer. J Comput Chem. 33:580–592.

    Article  Google Scholar 

  • Pantazis DA, Chen XY, Landis CR, Neese F (2008) All-electron scalar relativistic basis sets for third-row transition metal atoms. J Chem Theory Comput. 4(6):908–919.

    Article  CAS  Google Scholar 

  • Peterson KA, Puzzarini C (2005) Systematically convergent basis sets for transition metals. II. Pseudopotential-based correlation consistent basis sets for the group 11 (Cu, Ag, Au) and 12 (Zn, Cd, Hg) elements. Theor Chem Acc. 114:283–296.

    Article  CAS  Google Scholar 

  • Redlich O (1935) Eine allgemeine beziehung zwischen den schwingungsfrequenzen isotoper molekeln. Z Phys Chem B. 28:371–382 (in German).

    Article  Google Scholar 

  • Schauble EA (2007) Role of nuclear volume in driving equilibrium stable isotope fractionation of mercury, thallium, and other very heavy elements. Geochim Cosmochim Acta. 71:2170–2189.

    Article  CAS  Google Scholar 

  • Schauble EA (2013) Modeling nuclear volume isotope effects in crystals. Proc Natl Acad Sci USA. 110:17714–17719.

    Article  CAS  Google Scholar 

  • Sherman LS, Blum JD, Johnson KP, Keeler GJ, Barres JA, Douglas TA (2010) Mass-independent fractionation of mercury isotopes in arctic snow driven by sunlight. Nat Geosci. 3:173–177.

    Article  CAS  Google Scholar 

  • Sial AN, Lacerda LD, Ferreira VP, Frei R, Marquillas RA, Barbosa JA, Gaucher C, Windmöller CC, Pereira NS (2013) Mercury as a proxy for volcanic activity during extreme environmental turnover: The Cretaceous-Paleogene transition. Palaeogeogr Palaeoclimatol Palaeoecol. 387(7):153–164.

    Article  Google Scholar 

  • Smith CN, Kesler SE, Klaue B, Blum JD (2005) Mercury isotope fractionation in fossil hydrothermal systems. Geology. 33(10):825–828.

    Article  CAS  Google Scholar 

  • Stacey DN (1966) Isotope shifts and nuclear charge distributions. Rep Prog Phys. 29:171–215.

    Article  CAS  Google Scholar 

  • Sun RY, Sonke JE, Liu GJ (2016) Biogeochemical controls on mercury stable isotope compositions of world coal deposits: A review. Earth Sci Rev. 152:1–13.

    Article  CAS  Google Scholar 

  • Sun T, Gaut A, Tang S, Huang YX, ElSherief M, Zhao JY, Mirza D, Belding E, Chang KW, Wang WY (2019) Mitigating gender bias in natural language processing: Literature review. Comput Linguist Assoc. 57:1630–1640.

    Google Scholar 

  • Thibodeau AM, Ritterbush K, Yager JA, Joshua West A, Ibarra Y, Bottjer DJ, Berelson WM, Bergquist BA, Corsetti FA (2016) Mercury anomalies and the timing of biotic recovery following the end-Triassic mass extinction. Nat Commun. 7:1–8.

    Article  Google Scholar 

  • Urey HC (1947) The thermodynamic properties of isotopic substances. J Chem Soc. https://doi.org/10.1039/jr9470000562

    Article  Google Scholar 

  • Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys Chem Chem Phys. 7(18):3297–3305.

    Article  CAS  Google Scholar 

  • Wilson AK, Woon DE, Peterson KA, Dunning TH Jr (1999) Gaussian basis sets for use in correlated molecular calculations. IX. the atoms gallium through krypton. J Chem Phys. 110:7667–7676.

    Article  CAS  Google Scholar 

  • Xu CX, Yin RS, Peng JT, Hurley JP, Lepak RF, Gao JF, Feng XB, Hu RZ, Bi XW (2018) Mercury isotope constraints on the source for sediment–hosted lead–zinc deposits in the Changdu Area, southwestern China. Miner Deposita. 53:339–352.

    Article  CAS  Google Scholar 

  • Xu CX, Meng YM, Huang C, Tang C, Zheng FW (2021) Advances in the study on mercury isotope geochemistry and its application in mineral deposits. Rock Miner Anal. 40(2):173–186.

    CAS  Google Scholar 

  • Yang S, Liu Y (2015) Nuclear volume effects in equilibrium stable isotope fractionations of mercury, thallium and lead. Sci Rep. 5:1–10.

    Google Scholar 

  • Yang S, Liu Y (2016) Nuclear field shift effects on stable isotope fractionation: A review. Acta Geochim. 35(3):227–239.

    Article  CAS  Google Scholar 

  • Yin RS, Feng XB, Chen J (2014) Mercury stable isotopic compositions in coals from major coal producing fields in China and their geochemical and environmental implications. Environ Sci Technol. 48(10):5565–5574.

    Article  CAS  Google Scholar 

  • Zhu CW, Tao CH, Yin RS, Liao SL, Yang WF, Liu J, Barriga FJAS (2020) Seawater versus mantle sources of mercury in sulfide–rich seafloor hydrothermal systems, southwest Indian Ridge. Geochim Cosmochim Acta. 281:91–101.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This paper is supported by Chinese NSF project (42130114), the strategic priority research program (B) of CAS (XDB41000000) and the pre-research Project on Civil Aerospace Technologies No. D020202 funded by Chinese National Space Administration (CNSA)

Funding

Chinese NSF project (42130114), the strategic priority research program (B) of CAS (XDB41000000) and the pre-research Project on Civil Aerospace Technologies (No. D020202) funded by Chinese National Space Administration (CNSA).

Author information

Authors and Affiliations

Authors

Contributions

Yining Zhang and Yun Liu selected topics; Yining Zhang conceived and designed methods; Chenlu Yang calculated data, analyzed and compiled the first draft; Yining Zhang and Yun Liu reviewed and revised the first draft.

Corresponding author

Correspondence to Yun Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

N/A.

Consent to participate

N/A.

Consent for publication

N/A.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Zhang, Y. & Liu, Y. Nuclear volume effects in kinetic isotope fractionation: A case study of mercury oxidation by chlorine species. Acta Geochim (2024). https://doi.org/10.1007/s11631-024-00691-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11631-024-00691-5

Keywords

Navigation