Skip to main content
Log in

Trace elements in magmatic and hydrothermal quartz: Implications on the genesis of the Xingluokeng Tungsten Deposit, South China

  • Original Article
  • Published:
Acta Geochimica Aims and scope Submit manuscript

Abstract

The Xingluokeng deposit is the largest granite-related tungsten deposit within the Wuyi metallogenic belt in South China. The Xingluokeng intrusion primarily consists of porphyritic biotite granite, biotite granite, and fine-grained granite. The deposit is represented by veinlet-disseminated mineralization with K-feldspathization and biotitization, alongside quartz-vein mineralization with greisenization and sericitization. This study investigates in-situ analyses of quartz compositions from both the intrusion and hydrothermal veinlets and veins. Trace element correlations indicate that trivalent Al3+ and Fe3+ replace Si4+ within the quartz lattice, with monovalent cations (such as Li+, Na+, and K+) primarily serving as charge compensators. Low Ge/Al ratios (< 0.013) of quartz from granites suggest a magmatic origin. The low Al/Ti and Ge/Ti ratios, accompanied by high Ti contents in quartz, suggest that the porphyritic biotite granite and biotite granite are characterized by relatively low levels of differentiation and high crystallization temperatures. In contrast, the fine-grained granite exhibits a higher degree of fractionation, lower crystallization temperatures, and a closer association with tungsten mineralization. Ti contents in quartz from quartz veins indicate Qz-I formed at temperatures above 400 °C, while Qz-II to Qz-V formed at temperatures below 350 °C. Variations in different generations of quartz, as indicated by Al content and (Al + Fe)/(Li + Na + K) ratio, suggest that Qz-I precipitated from a less acidic fluid with a stable pH, whereas Qz-II to Qz-V originated from a more acidic fluid with notable pH variations. Consequently, alkaline alteration and acidic alteration supplied the essential Ca and Fe for the precipitation of scheelite and wolframite, respectively, highlighting a critical mechanism in tungsten mineralization at the Xingluokeng deposit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data will be made available on request.

Code availability

N/A.

References

  • Audétat A, Pettke T, Heinrich CA, Bodnar RJ (2008) Special paper: the composition of magmatic-hydrothermal fluids in barren and mineralized intrusions. Econ Geol. 103(5):877–908.

    Article  Google Scholar 

  • Ballouard C, Poujol M, Boulvais P, Branquet Y, Tartese R, Vigneresse JL (2016) Nb-Ta fractionation in peraluminous granites: A marker of the magmatic-hydrothermal transition. Geology. 44:231–234.

    Article  CAS  Google Scholar 

  • Beurlen H, Müller A, Silva D, Da Silva MRR (2011) Petrogenetic significance of LA-ICP-MS trace-element data on quartz from the Borborema Pegmatite Province, northeast Brazil. Mineral Mag. 75(5):2703–2719.

    Article  CAS  Google Scholar 

  • Breiter K, Müller A (2009) Evolution of rare metal-specialised granite melt documented by quartz chemistry. Eur J Mineral. 21:335–346.

    Article  CAS  Google Scholar 

  • Breiter K, Svojtka M, Ackerman L, Švecová K (2012) Trace element composition of quartz from the Variscan Altenberg-Teplice caldera (Krušné hory/Erzgebirge Mts, Czech Republic/Germany): Insights into the volcano-plutonic complex evolution. Chem Geol. 326–327:36–50.

    Article  Google Scholar 

  • Breiter K, Ackerman L, Svojtka M, Müller A (2013) Behavior of trace elements in quartz from plutons of different geochemical signature: A case study from the Bohemian Massif, Czech Republic. Lithos. 175–176:54–67.

    Article  Google Scholar 

  • Breiter K, Ďurišová J, Dosbaba M (2017) Quartz chemistry – A step to understanding magmatic-hydrothermal processes in ore-bearing granites: Cínovec/Zinnwald Sn-W-Li deposit, Central Europe. Ore Geol Rev. 90:25–35.

    Article  Google Scholar 

  • Cai YL (1984) A study of the genetic type of Xingluokeng Tungsten (molybdenum) Deposit, Fujian Province. Mineral Depos. 3(1):27–36 (in Chinese with English abstract).

    CAS  Google Scholar 

  • Cao JY, Yang XY, Lu YY, Fu JM, Yang LZ (2020) Zircon U-Pb and Sm-Nd geochronology and geochemistry of the Sn-W deposits in the northern Guposhan ore field, Nanling Range, southern China. Ore Geol Rev. 118:103323.

    Article  Google Scholar 

  • Chen L, Liu YS, Hu ZC, Gao S, Zong KQ, Chen HH (2011a) Accurate determinations of fifty-four major and trace elements in carbonate by LA–ICP-MS using normalization strategy of bulk components as 100%. Chem Geol. 284(3):283–295.

    Article  CAS  Google Scholar 

  • Chen XD, Chen ZY, Cheng YB, Ye HS, Wang H (2011b) Distribution and application of trace elements in hydrothermal quartz: understanding and prospecting. Geol Rev. 57:707–717. (in Chinese with English abstract).

    CAS  Google Scholar 

  • Dennen WH, Blackburn WH, Quesada A (1970) Aluminum in quartz as a geothermometer. Contrib Mineral Petrol. 27(4):332–342.

    Article  CAS  Google Scholar 

  • Elatikpo SM, Li H, Sallau AK (2023) Nature of fluid and genetic affiliation of the Bakoshi-Kundila Au deposit, Nigeria: Evidence from trace elements in hydrothermal quartz. Ore Geol Rev. 160:105620.

    Article  Google Scholar 

  • Fan XK, Mavrogenes J, Hou ZQ, Zhang ZY, Wu XY, Dai JL (2019) Petrogenesis and metallogenic significance of multistage granites in Shimensi tungsten polymetallic deposit, Dahutang giant ore field, South China. Lithos. 2019:326–344.

    Article  Google Scholar 

  • Fu SL, Lan Q, Yan J (2020) Trace element chemistry of hydrothermal quartz and its genetic significance: a case study from the Xikuangshan and Woxi giant Sb deposits in southern China. Ore Geol Rev. 126:103732.

    Article  Google Scholar 

  • Gao P, Zhao ZF, Zheng YF (2016) Magma mixing in granite petrogenesis: Insights from biotite inclusions in quartz and feldspar of Mesozoic granites from South China. J Asian Earth Sci. 123(2016):142–161.

    Article  Google Scholar 

  • Gao S, Zou XY, Hofstra AH, Qin KZ, Marsh EE, Bennett MM, Li GM, Jiang JL, Su SQ, Zhao JX, Li ZZ (2022a) Trace elements in quartz: Insights into source and fluid evolution in magmatic-hydrothermal systems. Econ Geol. 117(6):1415–1428.

    Article  Google Scholar 

  • Gao Y, Chen BL, Wu LY, Gao JF, Zeng GQ, Shen JH (2022b) Mantle-derived noble gas isotopes in the ore-forming fluid of Xingluokeng W-Mo deposit, Fujian Province. Minerals. 12(5):595.

    Article  CAS  Google Scholar 

  • Garate-Olave I, Müller A, Roda-Robles E, Gil-Crespo PP, Pesquera A (2017) Extreme fractionation in a granite–pegmatite system documented by quartz chemistry: The case study of Tres Arroyos (Central Iberian Zone, Spain). Lithos. 286–287:162–174.

    Article  Google Scholar 

  • Götte T, Pettke T, Ramseyer K, Koch-Müller M, Mullis J (2011) Cathodoluminescence properties and trace element signature of hydrothermal quartz: A fingerprint of growth dynamics. Am Mineral. 96(5–6):802–813.

    Article  Google Scholar 

  • Götze J (2009) Chemistry, textures and physical properties of quartz—Geological interpretation and technical application. Mineral Mag. 73(4):645–671.

    Article  Google Scholar 

  • Götze J, Plötze M, Habermann D (2001) Origin, spectral characteristics and practical applications of the cathodoluminescence (CL) of quartz - A review. Mineral Petrol. 71(3–4):225–250.

    Google Scholar 

  • Götze J, Plötze M, Graupner T, Hallbauer DK, Bray CJ (2004) Trace element incorporation into quartz: A combined study by ICP-MS, electron spin resonance, cathodoluminescence, capillary ion analysis, and gas chromatography. Geochem Cosmochim Acta. 68(18):3741–3759.

    Article  Google Scholar 

  • Guo CL, Wang RC, Yuan SD, Wu SH, Yin B (2015) Geochronological and geochemical constraints on the petrogenesis and geodynamic setting of the Qianlishan granitic pluton, Southeast China. Mineral Petrol. 109(2):253–282.

    Article  CAS  Google Scholar 

  • Hemley JJ, Jones WR (1964) Chemical aspects of hydrothermal alteration with emphasis on hydrogen metasomatism. Econ Geol. 59(4):538–569.

    Article  CAS  Google Scholar 

  • Huang RF, Audétat A (2012) The titanium-in-quartz (TitaniQ) thermobarometer: A critical examination and re-calibration. Geochem Cosmochim Acta. 84:75–89.

    Article  CAS  Google Scholar 

  • Jacamon F, Larsen RB (2009) Trace element evolution of quartz in the charnockitic Kleivan granite, SW-Norway: The Ge/Ti ratio of quartz as an index of igneous differentiation. Lithos. 107(3):281–291.

    Article  CAS  Google Scholar 

  • Ji GY, Jiang SH, Wei HT, Liu YF, Yan PC (2024) Trace elements and growth patterns in quartz from the Alubaogeshan granite in the Maodeng Mo-Bi-Sn-Cu deposit, Southern Great Xing’an Range, NE China. Ore Geol Rev. 105864.

  • Korges M, Weis P, Lüders V, Laurent O (2018) Depressurization and boiling of a single magmatic fluid as a mechanism for tin-tungsten deposit formation. Geology. 46(1):75–78.

    Article  CAS  Google Scholar 

  • Lan Q, Lin JR, Fu SL, Luo JC (2021) Cathodoluminescent textures and trace element signatures of hydrothermal quartz from the granite-related No. 302 uranium deposit, South China: A reconnaissance study for their genetic significances. J Geochem Explor. 224:106740.

    Article  CAS  Google Scholar 

  • Larsen RB, Henderson H, Ihlen PM, Jacamon F (2004) Distribution and petrogenetic behaviour of trace elements in granitic pegmatite quartz from granite from South Norway. Contrib Mineral Petrol. 147:615–628.

    Article  CAS  Google Scholar 

  • Lecumberri-Sanchez P, Vieira R, Heinrich CA, Pinto F, Wӓlle M (2017) Fluid-rock interaction is decisive for the formation of tungsten deposits. Geology. 45(7):579–582.

    Article  CAS  Google Scholar 

  • Lehmann K, Berger A, Götte T, Ramseyer K, Wiedenbeck M (2009) Growth related zonations in authigenic and hydrothermal quartz characterized by SIMS-, EPMA-SEM-CL- and SEM-CC-Imaging. Mineral Mag. 73(4):633–643.

    Article  CAS  Google Scholar 

  • Lehmann K, Pettke T, Ramseyer K (2011) Significance of trace elements in syntaxial quartz cement, Haushi Group sandstones, Sultanate of Oman. Chem Geol. 280:47–57.

    Article  CAS  Google Scholar 

  • Li XY, Gao JF, Zhang RQ, Lu JJ, Chen WH, Wu JW (2018) Origin of the Muguayuan veinlet-disseminated tungsten deposit, South China: Constraints from in-situ trace element analyses of scheelite. Ore Geol Rev. 99:180–194.

    Article  Google Scholar 

  • Li JW, Hu RZ, Xiao JF, Zhuo YZ, Yan J, Oyebamiji A (2020) Genesis of gold and antimony deposits in the Youjiang metallogenic province, SW China: Evidence from in situ oxygen isotopic and trace element compositions of quartz. Ore Geol Rev. 116:103257.

    Article  Google Scholar 

  • Liu YS, Hu ZC, Gao S, Günther D, Xu J, Gao CG, Chen HH (2008) In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem Geol. 257(1):34–43.

    Article  CAS  Google Scholar 

  • Liu L, Xu X, Zou H (2012) Episodic eruptions of the Late Mesozoic volcanic sequences in southeastern Zhejiang, SE China: Petrogenesis and implications for the geodynamics of paleo-Pacific subduction. Lithos. 154:166–180.

    Article  CAS  Google Scholar 

  • Liu XH, Xu JW, Lai JQ, Song XF, He HS, Zhang LJ, Shi J, Zhou X, Liao J, Cao YH, Li B (2023) Genetic significance of trace elements in hydrothermal quartz from the Xiangzhong metallogenic Province, South China. Ore Geol Rev. 152:105229.

    Article  Google Scholar 

  • Mao JW, Cheng YB, Chen MH, Franco P (2013) Major types and time–space distribution of Mesozoic ore deposits in South China and their geodynamic settings. Miner Depos. 48(3):267–294.

    Article  CAS  Google Scholar 

  • Mao ZH, Liu JJ, Mao JW, Deng J, Zhang F, Meng XY, Xiong BK, Xiang XK, Luo XH (2015) Geochronology and geochemistry of granitoids related to the giant Dahutang tungsten deposit, middle Yangtze River region, China: Implications for petrogenesis, geodynamic setting, and mineralization. Gondwana Res. 28(2):816–836.

    Article  CAS  Google Scholar 

  • Mao JW, Wu SH, Song SW, Dai P, Xie GQ, Su QW, Liu P, Wang XG, Yu ZZ, Chen XY, Tang WX (2020) The world-class Jiangnan tungsten belt: geological characteristics, metallogeny, and ore deposit model. Chin Sci Bull. 65:102–118 (in Chinese with English abstract).

    Article  Google Scholar 

  • Miyoshi N, Yamaguchi Y, Makino K (2005) Successive zoning of Al and H in hydrothermal vein quartz. Am Mineral. 90(2–3):310–315.

    Article  CAS  Google Scholar 

  • Monecke T, Kempe U, Götze J (2002) Genetic significance of the trace element content in metamorphic and hydrothermal quartz: A reconnaissance study. Earth Planet Sci Lett. 202(3):709–724.

    Article  CAS  Google Scholar 

  • Monnier L, Lach P, Salvi S, Melleton J, Bailly L, Béziat D, Monnier Y, Gouy S (2018) Quartz trace-element composition by LA-ICP-MS as proxy for granite differentiation, hydrothermal episodes, and related mineralization: The Beauvoir Granite (Echassières district), France. Lithos. 320–321:355–377.

    Article  Google Scholar 

  • Müller A, Breiter K, Seltmann R, Pécskay Z (2005) Quartz and feldspar zoning in the eastern Erzgebirge volcano-plutonic complex (Germany, Czech Republic): Evidence of multiple magma mixing. Lithos. 80(1):201–227.

    Article  Google Scholar 

  • Müller A, Seltmann R, Kober B, Eklund O, Jeffries T, Kronz A (2008) Compositional zoning of Rapakivi feldspars and coexisting quartz phenocrysts. Can Mineral. 46(6):1417–1442.

    Article  Google Scholar 

  • Müller A, Herrington R, Armstrong R, Seltman R, Kirwin D, Stenina N, Kronz A (2010) Trace elements and cathodoluminescence of quartz in stockwork veins of Mongolian porphyry-style deposits. Miner Depos. 45:707–727.

    Article  Google Scholar 

  • Müller A, Herklotz G, Giegling H (2018) Chemistry of quartz related to the Zinnwald/Cínovec Sn-W-Li greisen-type deposit, Eastern Erzgebirge, Germany. J Geochem Explor. 190:357–373.

    Article  Google Scholar 

  • Ni P, Wang XD, Wang GG, Huang JB, Pan JY, Wang TG (2015) An infrared microthermometric study of fluid inclusions in coexisting quartz and wolframite from Late Mesozoic tungsten deposits in the Gannan metallogenic belt, South China. Ore Geol Rev. 65:1062–1077.

    Article  Google Scholar 

  • Ni P, Li WS, Pan JY (2020) Ore-forming fluid and metallogenic mechanism of wolframite-quartz vein type tungsten deposits in South China. Acta Geol Sin (En Ed). 94(3):1774–1796.

    Article  CAS  Google Scholar 

  • Ni P, Wang GG, Li WS, Chi Z, Li SN, Gao Y (2021) A review of the Yanshanian ore-related felsic magmatism and tectonic settings in the Nanling W-Sn and Wuyi Au-Cu metallogenic belts, Cathaysia Block, South China. Ore Geol Rev. 133(2021):104088.

    Article  Google Scholar 

  • Pokrovskii GS, Schott J (1998) Thermodynamic properties of aqueous Ge(IV) hydroxide complexes from 25 to 350 °C: Implications for the behavior of germanium and the Ge/Si ratio in hydrothermal fluids. Geochem Cosmochim Acta. 62:1631–1642.

    Article  Google Scholar 

  • Qiu L, Yan DP, Tang SL, Wang Q, Yang WX, Tang XL, Wang JB (2016) Mesozoic geology of southwestern China: Indosinian foreland overthrusting and subsequent deformation. J Asian Earth Sci. 122:91–105.

  • Qu CY (2016) Geological characteristics and prospecting marks of Guomuyang wolframite Deposit in Qingliu County, Fujian Province. Geol Fujian. 35(2):146–152 (in Chinese with English abs.)

  • Romer RL, Kroner U (2016) Phanerozoic tin and tungsten mineralization—Tectonic controls on the distribution of enriched protoliths and heat sources for crustal melting. Gondwana Res. 31:60–95.

    Article  CAS  Google Scholar 

  • Rottier B, Casanova V (2021) Trace element composition of quartz from porphyry systems: A tracer of the mineralizing fluid evolution. Miner Depos. 56(5):843–862.

    Article  CAS  Google Scholar 

  • Rusk BG, Lowers HA, Reed MH (2008a) Trace elements in hydrothermal quartz: Relationships to cathodoluminescence textures and insights into vein formation. Geology. 36:547–550.

    Article  CAS  Google Scholar 

  • Rusk BG, Reed MH, Dilles JH (2008b) Fluid inclusion evidence for magmatic-hydrothermal fluid evolution in the porphyry copper-molybdenum deposit at Butte. Montana Econ Geol. 103(2):307–334.

    Article  CAS  Google Scholar 

  • Sun KK, Chen B, Deng J (2019) Ore genesis of the Zhuxi supergiant W-Cu skarn polymetallic deposit, South China: Evidence from scheelite geochemistry. Ore Geol Rev. 107:14–29.

    Article  Google Scholar 

  • Sun ZY, Wang JB, Wang Y, Zhang Y, Zhao LT (2021) Multistage hydrothermal quartz veins record the ore-forming fluid evolution in the Meiling Cu-Zn (Au) deposit, NW China. Ore Geol Rev. 131:104002.

    Article  Google Scholar 

  • Thomas JB, Bruce Watson E, Spear FS, Shemella PT, Nayak SK, Lanzirotti A (2010) TitaniQ under pressure: The effect of pressure and temperature on the solubility of Ti in quartz. Contrib Mineral Petrol. 160(5):743–759.

    Article  CAS  Google Scholar 

  • Wang GG, Ni P, Zhao C, Wang XL, Li P, Chen H, Zhu AD, Li L (2016a) Spatiotemporal reconstruction of Late Mesozoic silicic large igneous province and related epithermal mineralization in South China: Insights from the Zhilingtou volcanic-intrusive complex. J Geophys Res Solid Earth. 121:7903–7928.

    Article  CAS  Google Scholar 

  • Wang H, Feng CY, Zhao YM, Zhang MY, Chen RS, Chen JL (2016b) Ore genesis of the Lunwei granite-related scheelite deposit in the Wuyi Metallogenic Belt, Southeast China: constraints from geochronology, fluid inclusions, and H-O-S isotopes: Ore genesis of the Lunwei W deposit. Resour Geol. 66(3):240–258.

    Article  CAS  Google Scholar 

  • Wang D, Wang XL, Cai Y, Chen X, Zhang FR, Zhang FF (2017) Heterogeneous Conservation of Zircon Xenocrysts in Late Jurassic Granitic Intrusions within the Neoproterozoic Jiuling Batholith, South China: A magma chamber growth model in deep crustal hot zones. J Petrol. 58(9):1781–1810.

    Article  CAS  Google Scholar 

  • Wang D, Huang F, Wang Y, He H, Li X, Liu X, Sheng J, Liang T (2020) Regional metallogeny of Tungsten-tin-polymetallic deposits in Nanling region, South China. Ore Geol Rev. 120:103305.

    Article  Google Scholar 

  • Wang H, Feng CY, Li RX, Li C, Zhao C, Chen X, Wang GH (2021a) Ore-forming mechanism and fluid evolution processes of the Xingluokeng Tungsten Deposit, western Fujian Province: Constraints form in-situ trace elemental and Sr isotopic analyses of scheelite. Acta Petrol Sin. 37(3):698–716. (in Chinese with English abstract).

    Article  Google Scholar 

  • Wang H, Feng CY, Li RX, Zhao C, Liu P, Wang GH, Hao YJ (2021b) Petrogenesis of the Xingluokeng W-bearing granitic stock, western Fujian Province, SE China and its genetic link to W mineralization. Ore Geol Rev. 132(2021):103987.

    Article  Google Scholar 

  • Wang X, Xian HY, Teng HH, Ren MH (2021c) Ultra-long magma residence time leading to a new model for the tungsten mineralization in the Nanling Range (South China). Ore Geol Rev. 135:104217.

    Article  Google Scholar 

  • Wang SL, Peng HJ, Wang TR, Zou H, Zhou Q, Yang DJ, Sun C, Tian X (2022) Trace element composition and cathodoluminescence of Quartz in the Hongniu-Hongshan Skarn Deposit in Yunnan Province, Southwest China. Front Earth Sci, 10:864118.

    Article  Google Scholar 

  • Wark DA, Watson EB (2006) TitaniQ: A titanium-in-quartz geothermometer. Contrib Mineral Petrol. 152(6):743–754.

    Article  CAS  Google Scholar 

  • Watt GR, Wright P, Galloway S, McLean C (1997) Cathodoluminescence and trace element zoning in quartz phenocrysts and xenocrysts. Geochem Cosmochim Acta. 61(20):4337–4348.

    Article  CAS  Google Scholar 

  • Wu FY, Ji WQ, Sun DH, Yang YH, Li XH (2012) Zircon U-Pb geochronology and Hf isotopic compositions of the Mesozoic granites in southern Anhui Province, China. Lithos. 150:6–25.

    Article  CAS  Google Scholar 

  • Yang P, Rivers T (2000) Trace element partitioning between coexisting biotite and muscovite from metamorphic rocks, Western Labrador: Structural, compositional and thermal controls. Geochem Cosmochim Acta. 64(8):1451–1472.

    Article  CAS  Google Scholar 

  • Yang L, Tian Y, Li Q, Yan J, Xie J (2023) Texture and trace element characteristics of quartz in the Dongyuan porphyry W deposit, Eastern China. Solid Earth Sci. 8(4):305–318.

    Google Scholar 

  • Zhang JY (1983) Geochemical features of granites at Xingluokeng. Geol Fujian. 3:33–45. (in Chinese with English abstract).

    Google Scholar 

  • Zhang YX, Liu YM (1993) Geological-geochemical characteristics and origin of the Xingluokeng W deposit. Geochimica. 22(2):187–196. (in Chinese with English abstract).

    Google Scholar 

  • Zhang JJ, Chen ZH, Wang DH, Chen ZY, Liu SB, Wang CH (2008) Geological characteristics and metallogenic epoch of the Xingluokeng Tungsten Deposit, Fujian province. Geotecton Metallog. 32(1):92–97. (in Chinese with English abstract).

    CAS  Google Scholar 

  • Zhang Y, Gao JF, Ma DS, Pan JY (2018) The role of hydrothermal alteration in tungsten mineralization at the Dahutang tungsten deposit, South China. Ore Geol Rev. 95:1008–1027.

    Article  Google Scholar 

  • Zhang QQ, Gao JF, Tang YW, Min K (2020) In-situ LA-ICP-MS U-Pb dating and trace element analyses of Wolframites from the Xingluokeng Tungsten Deposit in Fujian Province, China. Bull Mineral Petrol Geochem. 39(6):1278–1291 (in Chinese with English Abstract).

    Google Scholar 

  • Zhang Y, Ma DS, Gao JF (2020b) Origin and evolution of ore-forming fluids in a tungsten mineralization system, Middle Jiangnan orogenic belt, South China: Constraints from in-situ LA-ICP-MS analyses of scheelite. Ore Geol Rev. 127:103806.

    Article  Google Scholar 

  • Zhao GC (2015) Jiangnan Orogen in South China: Developing from divergent double subduction. Precambrian Res. 27:1173–1180.

    Google Scholar 

  • Zhou HY, Müller A, Berndt J (2023) Quartz chemistry fingerprints melt evolution and metamorphic modifications in high-purity quartz deposits. Geochem Cosmochim Acta. 356:179–195.

    Article  CAS  Google Scholar 

  • Zhu LY, Jiang SY, Chen RS, Ma Y (2019) Origin of the Shangfang tungsten deposit in the Fujian Province of Southeast China: evidence from scheelite Sm-Nd geochronology, H-O isotopes and fluid inclusions studies. Minerals. 9(11):713.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is financially supported by the National Science Fund for Distinguished Young Scholars (No. 42025301) and Guizhou Provincial 2020 Science and Technology Subsidies (No. GZ2020SIG). The authors would like to thank the staff of Ninghua Xingluokeng Tungsten Corporation Ltd. for their help during fieldwork. We are indebted to Junjie Han for his kind help during the fsLA-ICP-MS analyses. Two anonymous reviewer and editors are much appreciated for their critical and constructive comments on this paper.

Funding

This work was supported by the National Science Fund for Distinguished Young Scholars (42025301) and Guizhou Provincial 2020 Science and Technology Subsidies (No. GZ2020SIG).

Author information

Authors and Affiliations

Authors

Contributions

Q-QZ: Conceptualization, Data curation, Investigation, Visualization, Validation, Writing—original draft, Writing—review and editing; Y-WC: Writing—review and editing; J-FG: Investigation, Validation, Funding acquisition, Supervision, Writing—review and editing.

Corresponding author

Correspondence to Jian-Feng Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethics approval

N/A.

Consent to participate

N/A.

Consent for publication

N/A.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLS 161 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, QQ., Chen, YW. & Gao, JF. Trace elements in magmatic and hydrothermal quartz: Implications on the genesis of the Xingluokeng Tungsten Deposit, South China. Acta Geochim (2024). https://doi.org/10.1007/s11631-024-00688-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11631-024-00688-0

Keywords

Navigation