Skip to main content
Log in

The impact of climate change on groundwater quantity and quality in a semi-arid environment: a case study of Ain Azel plain (Northeast Algeria)

  • Original Article
  • Published:
Acta Geochimica Aims and scope Submit manuscript

Abstract

In the last decade, North Africa has witnessed significant population growth, particularly those bordering the Mediterranean Sea. This led to increased demand for groundwater, which is an essential source for various water uses such as drinking water supplies and irrigation. Generally, human activities play a crucial role in the different quantitative and qualitative changes in groundwater. Now, climate changes such as a decrease in precipitation have also led to a shortage of water resources and a decline in the groundwater table. This paper presents the impact of climate changes on groundwater resources in the Ain Azel region, Setif, northeastern Algeria. The analysis of long-term spatiotemporal variability in rainfall over 63 years (1958–2021) revealed a significant decline in groundwater recharge, especially after 2013. In contrast, the Pettitt and Mann–Kendall tests show increased temperatures with breaks between 1984 and 1986. A piezometric analysis of the alluvial aquifer demonstrated a significant decline in groundwater levels in the last 20 years. Hydrochemical analysis showed that groundwater in the region is dominated by Ca–Mg–Cl water type, which indicates the presence of water salinity phenomenon. Water Quality Index (WQI) analysis showed the deterioration of groundwater in the area, which may be caused by several factors: brine intrusion from the Salt Lake (Sebkha) in the north; the dissolution of evaporites (Triassic) and/or anthropogenic sources of agricultural and industrial origin. Our findings provide an overview summarizing the state of groundwater, which will help improve groundwater resource management in the region in the coming years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abbass K, Qasim MZ, Song H, Murshed M, Mahmood H, Younis I (2022) A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environ Sci Pollut Res Int 29:42539–42559. https://doi.org/10.1007/s11356-022-19718-6

    Article  Google Scholar 

  • Aboutaleb MEZERZI (2015) Les formations évaporitiques triasiques des Hautes Plaines Sétifiennes (NE Algérien): Répartition et caractérisation des substances minérales associées. Université des Frères Mentouri Constantine, Algeria, Mémoire de Magistère, p170 (in French)

    Google Scholar 

  • Adimalla N, Qian H (2019) Groundwater quality evaluation using water quality index (WQI) for drinking purposes and human health risk (HHR) assessment in an agricultural region of Nanganur, south India. Ecotoxicol Environ Saf 176:153–161. https://doi.org/10.1016/j.ecoenv.2019.03.066

    Article  Google Scholar 

  • Alamdari N, Sample DJ, Ross AC, Easton ZM (2020) Evaluating the impact of climate change on water quality and quantity in an urban watershed using an ensemble approach. Estuaries Coasts 43:56–72. https://doi.org/10.1007/s12237-019-00649-4

    Article  Google Scholar 

  • Al-Maliki LA, Al-Mamoori SK, Jasim IA, El-Tawel K, Al-Ansari N, Comair FG (2022) Perception of climate change effects on water resources: Iraqi undergraduates as a case study. Arab J Geosci. https://doi.org/10.1007/s12517-022-09695-y

    Article  Google Scholar 

  • Appelo C, Postma D (2004) Geochemistry, groundwater and pollution. CRC Press, Boca Raton

    Book  Google Scholar 

  • Atta HS, Omar MA-S, Tawfik AM (2022) Water quality index for assessment of drinking groundwater purpose case study: area surrounding Ismailia Canal, Egypt. J Eng Appl Sci. https://doi.org/10.1186/s44147-022-00138-9

    Article  Google Scholar 

  • Atwoli L, Muhia J, Merali Z (2022) Mental health and climate change in Africa. Bjpsych Int 19:86–89. https://doi.org/10.1192/bji.2022.14

    Article  Google Scholar 

  • Azizi H, Nejatian N (2022) Evaluation of the climate change impact on the intensity and return period for drought indices of SPI and SPEI (study area: Varamin plain). Water Supply 22:4373–4386. https://doi.org/10.2166/ws.2022.056

    Article  Google Scholar 

  • Barbieri M, Barberio MD, Banzato F, Billi A, Boschetti T, Franchini S, Gori F, Petitta M (2023) Climate change and its effect on groundwater quality. Environ Geochem Health 45:1133–1144. https://doi.org/10.1007/s10653-021-01140-5

    Article  Google Scholar 

  • Belkhiri L, Boudoukha A, Mouni L, Baouz T (2010) Application of multivariate statistical methods and inverse geochemical modeling for characterization of groundwater—a case study: Ain Azel plain (Algeria). Geoderma 159:390–398. https://doi.org/10.1016/j.geoderma.2010.08.016

    Article  Google Scholar 

  • Belkhiri L, Mouni L, Boudoukha A (2012a) Geochemical evolution of groundwater in an alluvial aquifer: case of El Eulma aquifer, East Algeria. J Afr Earth Sc 66–67:46–55. https://doi.org/10.1016/j.jafrearsci.2012.03.001

    Article  Google Scholar 

  • Belkhiri L, Mouni L, Tiri A (2012b) Water-rock interaction and geochemistry of groundwater from the Ain Azel aquifer, Algeria. Environ Geochem Health 34:1–13. https://doi.org/10.1007/s10653-011-9376-4

    Article  Google Scholar 

  • Bhavsar Z, Patel J (2023) Assessing potability of groundwater using groundwater quality index (GWQI), entropy weighted groundwater pollution index (EGPI) and geospatial analysis for khambhat coastal region of Gujarat. Groundw Sustain Dev 21:100916. https://doi.org/10.1016/j.gsd.2023.100916

    Article  Google Scholar 

  • Bouderbala A (2017) Assessment of water quality index for the groundwater in the upper Cheliff plain, Algeria. J Geol Soc India 90:347–356. https://doi.org/10.1007/s12594-017-0723-7

    Article  Google Scholar 

  • Bouderbala A (2019) The impact of climate change on groundwater resources in coastal aquifers: case of the alluvial aquifer of Mitidja in Algeria. Environ Earth Sci. https://doi.org/10.1007/s12665-019-8702-5

  • Boudoukha A (1998) Hydrogéologie des hautes plaines Sétifiennes et hydrochimie des eaux souterraines. Thése de Doctorat, Université de annaba. p 230, Algérie (in French)

  • Bouregaa T (2018) Impact Des Changements Climatiques (précipitations Et Températures) Sur La Production Agricole En Zone Semi Aride: Cas De La Région De Sétif. Thése de Doctorat, Universite de Setif1, Algérie (in French)

  • Boutaleb A (2001) Mineralizations with Pb-Zn of the Se´tifien-Hodna field: Gitology, petrography of dolomites, microthermometry and implications metallogenic: Thesis

  • Brindha K, Neena Vaman KV, Srinivasan K, Sathis Babu M, Elango L (2014) Identification of surface water-groundwater interaction by hydrogeochemical indicators and assessing its suitability for drinking and irrigational purposes in Chennai, Southern India. Appl Water Sci 4:159–174. https://doi.org/10.1007/s13201-013-0138-6

    Article  Google Scholar 

  • Carroll D (1959) ION exchange in clays and other minerals. Geol Soc America Bull 70:749. https://doi.org/10.1130/0016-7606(1959)70[749:IEICAO]2.0.CO;2

    Article  Google Scholar 

  • Costa D, Zhang H, Levison J (2021) Impacts of climate change on groundwater in the Great Lakes Basin: a review. J Great Lakes Res 47:1613–1625. https://doi.org/10.1016/j.jglr.2021.10.011

    Article  Google Scholar 

  • Demdoum A (2009) Etude hydrogéochimique, isotopique et impact de la pollution sur les eaux de la région d’El Eulma. Thése de Doctorat, Univ, de Constantine, Algérie (in French)

    Google Scholar 

  • Downing TE, Ringius L, Hulme M, Waughray D (1997) Adapting to climate change in Africa. Mitig Adapt Strat Glob Change 2:19–44. https://doi.org/10.1007/BF02437055

    Article  Google Scholar 

  • Dragon K, Gorski J (2015) Identification of groundwater chemistry origins in a regional aquifer system (Wielkopolska region, Poland). Environ Earth Sci 73:2153–2167. https://doi.org/10.1007/s12665-014-3567-0

    Article  Google Scholar 

  • Duran-Encalada JA, Paucar-Caceres A, Bandala ER, Wright GH (2017) The impact of global climate change on water quantity and quality: a system dynamics approach to the US–Mexican transborder region. Eur J Oper Res 256:567–581. https://doi.org/10.1016/j.ejor.2016.06.016

    Article  Google Scholar 

  • Ekbal E, Khan TA (2022) Hydrogeochemical characterization of groundwater quality in parts of Amroha District, Western Uttar Pradesh, India. HydroResearch 5:54–70. https://doi.org/10.1016/j.hydres.2022.07.002

    Article  Google Scholar 

  • Fisher RS, Mullican IWF (1997) Hydrochemical evolution of sodium-sulfate and sodium-chloride groundwater beneath the northern Chihuahuan Desert, Trans-Pecos, Texas, USA. Hydrogeol J 5:4–16. https://doi.org/10.1007/s100400050102

    Article  Google Scholar 

  • Fu Y, Zhang X, Anderson RG, Shi R, Di Wu, Ge Q (2022) Spatiotemporal distribution of drought based on the standardized precipitation index and cloud models in the Haihe Plain. China Water 14:1672. https://doi.org/10.3390/w14111672

    Article  Google Scholar 

  • Galcon J (1967) Research on the geology and the metalliferous lodgings of Sétifien Such. Thesis natural sciences.

  • Guiraud R (1973) Post-triassic evolution of before country of the Alpine chain of Algeria, according to the study of the El Eulma basin and close areas. Thesis natural sciences

  • Chenni H, Zhang Z, Jure J (2020) Impacts of rapid population growth and climate change on domestic water demand in Setif Province, Algeria: present and future supply challenges. IJSRP 10:10086. https://doi.org/10.29322/IJSRP.10.04.2020.p10086

  • Hem J (1992) Study and interpretation of chemical characteristics of natural water, 3rd edn. USGS Water-Supply Paper

  • Hennia K, Saaed Hamoudi A, Bouderbala A (2022) Hydrogeochemical characterization and groundwater quality assessment: a case study of the alluvial aquifer in the Middle Western Cheliff (Algeria). Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2022.2059361

    Article  Google Scholar 

  • Huang YF, Ang JT, Tiong YJ, Mirzaei M, Amin MZM (2016) Drought Forecasting Using SPI and EDI under RCP-8.5 Climate change scenarios for Langat River Basin, Malaysia. Procedia Eng 154:710–717. https://doi.org/10.1016/j.proeng.2016.07.573

    Article  Google Scholar 

  • Kada H (2022) Apport de la géologie, l’hydrogéologie et des outils hydrogéochimiques à la connaissance des aquifères du barrémien et hauterivien de la région sud-sétifienne nord-est algérien. Université Larbi Tébessi-Tébessa, Algérie, Thése de Doctorat (in French)

    Google Scholar 

  • Kada H, Demdoum A, Baali F, Aouati H, Eddine HD (2022) Heavy metal contamination and exposure risk assessment via drinking groundwater in Ain Azel territory, north-eastern Algeria. Sustain Water Resour Manag. https://doi.org/10.1007/s40899-022-00748-4

    Article  Google Scholar 

  • Kendall M (1975) Rank correlation measures. Charles Griffin, London

    Google Scholar 

  • Kouadra R, Demdoum A (2020) Hydrogeochemical characteristics of groundwater and quality assessment for the purposes of drinking and irrigation in Bougaa area, Northeastern Algeria. Acta Geochim 39:642–654. https://doi.org/10.1007/s11631-019-00393-3

    Article  Google Scholar 

  • Lazhar B, Abdurrahman B, Lotfi M, Toufik B (2010) Multivariate statistical characterization of groundwater quality in Ain Azel plain, Algeria. Afr J Environ Sci Technol 4(8):526–534

    Google Scholar 

  • Leal Filho W, Belay S, Kalangu J, Wuta M, Munishi P, Musiyiwa K (2017) Climate change adaptation in Africa: Fostering resilience and capacity to adapt/Walter Leal Filho. In: Simane B, Kalangu J, Wuta M, Munishi P, Musiyiwa K (eds) Climate Change Management. Springer, Cham, pp 1610–2010

    Google Scholar 

  • Letcher TM (2021) The impacts of climate change: A comprehensive study of physical, biophysical, social, and political issues/edited by Trevor M. Letcher. Elsevier, Amsterdam

  • Li X, Li G, Zhang Y (2014) Identifying major factors affecting groundwater change in the North China plain with grey relational analysis. Water 6:1581–1600. https://doi.org/10.3390/w6061581

    Article  Google Scholar 

  • Magesh NS, Krishnakumar S, Chandrasekar N, Soundranayagam JP (2013) Groundwater quality assessment using WQI and GIS techniques, Dindigul district, Tamil Nadu, India. Arab J Geosci 6:4179–4189. https://doi.org/10.1007/s12517-012-0673-8

    Article  Google Scholar 

  • Mann HB (1945) Nonparametric tests against trend. Econometrica 13:245. https://doi.org/10.2307/1907187

    Article  Google Scholar 

  • Margaryan LA (2017) Assessment of the climate change impact on the quality and quantity of drinking water sources in Armenia. Russ J Gen Chem 87:3160–3165. https://doi.org/10.1134/S1070363217130096

    Article  Google Scholar 

  • Marquina A (ed) (2004) Environmental challenges in the mediterranean 2000–2050. Springer, Netherlands

    Google Scholar 

  • Matyssek R (2013) Climate change, air pollution and global challenges: Understanding and perspectives from forest research/edited by R. Matyssek [and six others]. Developments in environmental science, volume 13. Elsevier, Amsterdam

  • McKee TB, Doesken NJ, Kleist J (ed) (1993) The relationship of drought frequency and duration to time scales. In: 8th Conference on Applied Climatology,17–22 January, pp 179–184.

  • Meddi M, Boucefiane A (2013) Climate change impact on groundwater in Cheliff-Zahrez Basin (Algeria). APCBEE Proc 5:446–450. https://doi.org/10.1016/j.apcbee.2013.05.077

    Article  Google Scholar 

  • Moazzam MFU, Doh YH, Lee BG (2022) Impact of urbanization on land surface temperature and surface urban heat Island using optical remote sensing data: a case study of Jeju Island, Republic of Korea. Build Environ 222:109368. https://doi.org/10.1016/j.buildenv.2022.109368

  • Mohamed T, AL-AMIN AQ (2018) Climate change and water resources in Algeria: vulnerability, impact and adaptation strategy. EES 18:411–429. https://doi.org/10.25167/ees.2018.45.23

  • Mustafa SMT, Abdollahi K, Verbeiren B, Huysmans M (2017) Identification of the influencing factors on groundwater drought and depletion in north-western Bangladesh. Hydrogeol J 25:1357–1375. https://doi.org/10.1007/s10040-017-1547-7

    Article  Google Scholar 

  • Nawrin N, Junayed TR, Khan MR, Alam MJ, Mia MB, Ahmed KM (2022) A hydrogeochemical characterization and quality assessment of groundwater from the Sadar Upazila, Khagrachhari District, Bangladesh for irrigation and drinking uses. Water 14:3052. https://doi.org/10.3390/w14193052

    Article  Google Scholar 

  • Ouhamdouch S, Bahir M (2017) Climate change impact on future rainfall and temperature in semi-arid areas (Essaouira Basin, Morocco). Environ Process 4:975–990. https://doi.org/10.1007/s40710-017-0265-4

    Article  Google Scholar 

  • Ouhamdouch S, Bahir M, Ouazar D, Carreira PM, Zouari K (2019) Evaluation of climate change impact on groundwater from semi-arid environment (Essaouira Basin, Morocco) using integrated approaches. Environ Earth Sci. https://doi.org/10.1007/s12665-019-8470-2

  • Palutikof JP, Holt T (2004) Climate change and the occurrence of extremes: some implications for the Mediterranean Basin. In: Marquina A (ed) Environmental Challenges in the Mediterranean 2000–2050. Springer, Netherlands, pp 61–73

    Chapter  Google Scholar 

  • Pandey A, Kumar S, Kumar A (eds) (2021) Hydrological aspects of climate change. Springer Transactions in Civil and Environmental Engineering Ser. Springer, Gateway East, Singapore

  • Panthi J, Pradhanang SM, Nolte A, Boving TB (2022) Saltwater intrusion into coastal aquifers in the contiguous United States—a systematic review of investigation approaches and monitoring networks. Sci Total Environ 836:155641. https://doi.org/10.1016/j.scitotenv.2022.155641

  • Pettitt AN (1979) A non-parametric approach to the change-point problem. Appl Stat 28:126. https://doi.org/10.2307/2346729

    Article  Google Scholar 

  • Piper AM (1944) A graphic procedure in the geochemical interpretation of water-analyses. Trans AGU 25:914. https://doi.org/10.1029/TR025i006p00914

    Article  Google Scholar 

  • Rajosoa AS, Abdelbaki C, Mourad KA (2022) Assessing the impact of climate change on the Medjerda River Basin. Arab J Geosci. https://doi.org/10.1007/s12517-022-10288-y

  • Ram A, Tiwari SK, Pandey HK, Chaurasia AK, Singh S, Singh YV (2021) Groundwater quality assessment using water quality index (WQI) under GIS framework. Appl Water Sci. https://doi.org/10.1007/s13201-021-01376-7

  • Rouabhi A (2018) Implications des changements climatiques dans l’agriculture et le développement durable : Cas des hautes plaines sétifiennes. Thése de Doctorat, Universite de Setif 1, Algérie. (in French)

  • Savornin J (1920) Geological investigation of Hodna and Setifien plate. Thesis Natural Sciences

  • Shaikh H, Gaikwad H, Kadam A, Umrikar B (2020) Hydrogeochemical characterization of groundwater from semiarid region of western India for drinking and agricultural purposes with special reference to water quality index and potential health risks assessment. Appl Water Sci. https://doi.org/10.1007/s13201-020-01287-z

  • Sharan A, Datta B, Lal A (2023b) Integrating numerical modelling and scenario-based sensitivity analysis for saltwater intrusion management: case study of a complex heterogeneous island aquifer system. Environ Monit Assess 195:553. https://doi.org/10.1007/s10661-023-11159-z

    Article  Google Scholar 

  • Sharan A, Lal A, Datta B (2021) A review of groundwater sustainability crisis in the Pacific Island countries: challenges and solutions. J Hydrol 603:127165. https://doi.org/10.1016/j.jhydrol.2021.127165

  • Sharan A, Lal A, Datta B (2023a) Evaluating the impacts of climate change and water over-abstraction on groundwater resources in Pacific island country of Tonga. Groundw Sustain Dev 20:100890. https://doi.org/10.1016/j.gsd.2022.100890

  • Singh S, Raju NJ, Ramakrishna C (2015) Evaluation of groundwater quality and its suitability for domestic and irrigation use in parts of the Chandauli-Varanasi Region, Uttar Pradesh, India. JWARP 07:572–587. https://doi.org/10.4236/jwarp.2015.77046

    Article  Google Scholar 

  • Singh S, Singh P, Rangabhashiyam S, Srivastava KK (2021) Global climate change. Elsevier, Amsterdam

    Google Scholar 

  • Singh A, Raju A, Chandniha SK, Singh L, Tyagi I, Karri RR, Kumar A (2023) Hydrogeochemical characterization of groundwater and their associated potential health risks. Environ Sci Pollut Res Int 30:14993–15008. https://doi.org/10.1007/s11356-022-23222-2

    Article  Google Scholar 

  • Steynor A, Pasquini L (2019) Informing climate services in Africa through climate change risk perceptions. Clim Serv 15:100112. https://doi.org/10.1016/j.cliser.2019.100112

  • Swain S, Taloor AK, Dhal L, Sahoo S, Al-Ansari N (2022) Impact of climate change on groundwater hydrology: a comprehensive review and current status of the Indian hydrogeology. Appl Water Sci. https://doi.org/10.1007/s13201-022-01652-0

  • Talalaj IA (2014) Adaptation of water quality index (WQI) for groundwater quality assessment near the landfill site. J Water Chem Technol 36:144–151. https://doi.org/10.3103/S1063455X14030084

    Article  Google Scholar 

  • Taylor RG, Scanlon B, Döll P, Rodell M, van Beek R, Wada Y, Longuevergne L, Leblanc M, Famiglietti JS, Edmunds M, Konikow L, Green TR, Chen J, Taniguchi M, Bierkens MFP, MacDonald A, Fan Y, Maxwell RM, Yechieli Y, Gurdak JJ, Allen DM, Shamsudduha M, Hiscock K, Yeh PJ-F, Holman I, Treidel H (2013) Ground water and climate change. Nature Clim Change 3:322–329. https://doi.org/10.1038/NCLIMATE1744

    Article  Google Scholar 

  • Vélez-Nicolás M, García-López S, Ruiz-Ortiz V, Zazo S, Molina JL (2022) Precipitation variability and drought assessment using the SPI: application to long-term series in the strait of Gibraltar Area. Water 14:884. https://doi.org/10.3390/w14060884

    Article  Google Scholar 

  • Vila JM (1980) The alpine chain of eastern Algeria and the Algerian-Tunisian border. Thesis of Doctorate Natural Sciences

  • Werner AD, Bakker M, Post VE, Vandenbohede A, Lu C, Ataie-Ashtiani B, Simmons CT, Barry DA (2013) Seawater intrusion processes, investigation and management: recent advances and future challenges. Adv Water Resour 51:3–26. https://doi.org/10.1016/j.advwatres.2012.03.004

    Article  Google Scholar 

  • World Health Organization (2008) Guidelines for Drinking-water Quality, 3rd edn. Third Edition incorporating the First and Second Addenda, Geneva

    Google Scholar 

Download references

Acknowledgements

We thank everyone who participated in this research work, including the authors, research laboratories, and academic institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasna Aouati.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aouati, H., Demdoum, A., Kada, H. et al. The impact of climate change on groundwater quantity and quality in a semi-arid environment: a case study of Ain Azel plain (Northeast Algeria). Acta Geochim 42, 1065–1078 (2023). https://doi.org/10.1007/s11631-023-00633-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-023-00633-7

Keywords

Navigation