Skip to main content
Log in

Petrogenesis of the Borjuri diorite pluton in the Mikir Massif of Northeast India: implications for post-collisional intermediate magmatism during the Pan-African orogeny

  • Original Article
  • Published:
Acta Geochimica Aims and scope Submit manuscript

Abstract

The Assam-Meghalaya Gneissic Complex (AMGC) of northeast India contains numerous Pan-African granitic bodies that have been attributed to post-collisional rift-related magmatism. The present study is concerned with the first appraisal of intermediate magmatism (diorite, monzonite, and monzodiorite) found in the Borjuri Pluton of Mikir Massif, which is the eastern extension of AMGC. The diorites are strongly metaluminous and exhibit enriched LREE ([La/Yb]N = 1.63–7.37) with respect to HREE ([Gd/Yb]N = 1.95–2.27). The studied rocks do not show any mineralogical or textural indication of metamorphism. Tectonic discrimination diagrams indicate that these rocks originated in a within-plate tectonic setting. The lower Mg# (33.49–38.69), low Cr (below detection limit), and Ni (27–41 ppm) contents along with elemental ratios such as Rb/Sr (0.32–0.95), La/Nb (0.49–4.21), and Nb/Ce (0.11–0.64) suggest a crustal source for the diorites. Discrimination diagrams coupled with elemental ratios suggest that these rocks originated due to partial melting of mafic components in the crust with possible contribution from mantle materials. The P–T conditions of diorite emplacement (7.4 kbar, 688 °C) were calculated using the amphibole-plagioclase geothermobarometer. Geochemical and geochronological data of the Pan-African felsic plutons reported from the AMGC indicate that these rocks were emplaced in a post-collisional extensional regime. The Borjuri Pluton is in close proximity with the Kathalguri Pluton, which has been reported as a product of Pan-African magmatism. In view of the numerous extensional Pan-African felsic magmatism reported from the AMGC and based on the close vicinity of the Borjuri diorites with the Kathalguri granites, we speculate that the Borjuri diorites are products of the Pan-African post-collisional magmatism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdel-Rahman AFM (2019) Geochemistry, age and origin of the Mons Claudianus TTG batholith (Egypt): insight into the role of Pan-African magmatism in uniting plates of Gondwana. Geol Mag 156:969–988. https://doi.org/10.1017/S0016756818000304

    Article  Google Scholar 

  • Acharyya SK (2001) Geodynamic setting of the Central Indian Tectonic Zone in central, eastern and north eastern India. J Geol Soc India Spec Publ 64:17–35

    Google Scholar 

  • Allegré CJ, Minster JF (1978) Quantitative models of trace element behavior in magmatic processes. Earth Planet Sci Lett 38:1–25. https://doi.org/10.1016/0012-821X(78)90123-1

    Article  Google Scholar 

  • Altherr R, Holl A, Hegner E (2000) High-potassium, calc-alkaline I-type plutonism in the European Variscides: Northern Vosges (France) and northern Schwarzwald (Germany). Lithos 50:51–73. https://doi.org/10.1016/S0024-4937(99)00052-3

    Article  Google Scholar 

  • Anderson JL (1996) Status of thermobarometry in granitic batholiths. Trans R Soc Edinburgh Earth Sci 87:125–138. https://doi.org/10.1017/S0263593300006544

    Article  Google Scholar 

  • Anderson JL, Smith DR (1995) The effects of temperature and fO2 on the Al-in hornblende barometer. Am Mineral 8:549–559. https://doi.org/10.2138/am-1995-5-615

    Article  Google Scholar 

  • Balaram V, Saxena VK, Manikyamba C, Ramesh SL (1990) Determination of rare earth elements in Japanese rock standards by inductively coupled plasma mass spectrometry. Atom Spectrosc 11:19–23

    Google Scholar 

  • Batchelor RA, Bowden P (1985) Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chem Geol 48:43–55. https://doi.org/10.1016/0009-2541(85)90034-8

    Article  Google Scholar 

  • Bhattcharjee C, Rahman S (1985) Structure and lithostratigraphay of the Shillong Group of rocks of East Khasi Hills of Meghalaya. Bull Geol Mining Metall Soc India 53:90–99

    Google Scholar 

  • Binham E (2001) Plateau “pop up” in the great 1897 Assam earthquake. Nature 410:806–809. https://doi.org/10.1038/35071057

    Article  Google Scholar 

  • Blundy JD, Holland TJB (1990) Calcic amphibole equilibria and a new amphibole plagioclase geothermometer. Contrib Mineral Petrol 104:208–224. https://doi.org/10.1007/BF00306444

    Article  Google Scholar 

  • Bora S, Kumar S, Yi K, Kim N, Lee TH (2013) Geochemistry and U-Pb SHRIMP zircon chronology of granitoids and microgranular enclaves from Jhirgadandi pluton of Mahakoshal Belt, Central India Tectonic Zone, India. J Asian Earth Sci 70:99–114

    Article  Google Scholar 

  • Chappell BW, White AJR (1992) I- and S-type granites in the Lachlan Fold Belt. Earth Environ Sci Trans R Soc Edinb 83:1–26. https://doi.org/10.1017/S0263593300007720

    Article  Google Scholar 

  • Chatterjee N, Bhattacharya A, Duarah BP, Mazumdar AC (2011) Late Cambrian reworking of Palaeo-Mesoproterozoic granulites in Shillong-Meghalaya Gneissic Complex (Northeast India): evidence from PT pseudosection analysis and monazite chronology and implications for East Gondwana assembly. J Geol 119:311–330

    Article  Google Scholar 

  • Chatterjee N, Ghose NC (2011) Extensive Early Neoproterozoic high-grade metamorphism in North Chotanagpur Gneissic Complex of the Central Indian Tectonic Zone. Gondwana Res 20:362–379. https://doi.org/10.1016/j.gr.2010.12.003

    Article  Google Scholar 

  • Chattopadhyay A, Bhowmik SK, Roy A (2020) Tectonothermal evolution of the Central Indian Tectonic Zone and its implications for Proterozoic supercontinent assembly: the current status. Episodes 43:132–144

    Article  Google Scholar 

  • Collins AS, Razakamanana T, Windley BF (2000) Neoproterozoic extensional detachment in central Madagascar: Implications for the collapse of the East African orogen. Geol Mag 137:39–51. https://doi.org/10.1017/S001675680000354X

    Article  Google Scholar 

  • Collins AS, Windley BF (2002) The tectonic evolution of central and northern Madagascar and its place in the final assembly of Gondwana. J Geol 110:325–340

    Article  Google Scholar 

  • Cui M, Zhang B, Zhang L (2011) U-Pb dating of baddeleyite and zircon from the Shizhaigou diorite in the southern margin of North China Craton: constrains on the timing and tectonic setting of the Paleoproterozoic Xiong’er Group. Gondwana Res 20:184–193. https://doi.org/10.1016/j.gr.2011.01.010

    Article  Google Scholar 

  • De Paolo DJ, Daley EE (2000) Neodymium isotopes in basalts of the southwest basin and range and lithospheric thinning during continental extension. Chem Geol 169:157–185. https://doi.org/10.1016/S0009-2541(00)00261-8

    Article  Google Scholar 

  • Deshmukh T, Prabhakar N, Bhattacharya A, Madhavan K (2017) Late Paleoproterozoic clockwise P-T history in the Mahakoshal Belt, Central Indian Tectonic zone: implications for Columbia supercontinent assembly. Precam Res 298:56–78

    Article  Google Scholar 

  • Devi NR (2018) An overview of geochemical significance of Cretaceous mafic dykes in and around Nongchram Fault Zone of Shillong Plateau, NE India: Implications for genetic link to Kerguelen plume. Int J Curr Trends Sci Tech 8:181–199

    Google Scholar 

  • Devi NR, Sarma KP (2006) Tectonostratigraphic study of conglomerates of Shillong basin of Meghalaya, India. J Geol Soc India 68:1100–1108

    Google Scholar 

  • Dhurandhar AP, Pandey UK, Raminaidu C (2019) Petrochemistry and Sr, Nd, Pb Isotopic Characteristics of Basic Dykes of Mikir Hills, Assam. J Geol Soc India 94:559–572. https://doi.org/10.1007/s12594-019-1361-z

    Article  Google Scholar 

  • Fu J, Liu S, Chen X, Bai X, Guo R, Wang W (2016) Petrogenesis of taxitic dioritic tonalitic gneisses and Neoarchean crustal growth in Eastern Hebei, North China Craton. Precam Res 284:64–87. https://doi.org/10.1016/j.precamres.2016.08.002

    Article  Google Scholar 

  • Ghosh S, Fallick AE, Paul DK, Potts PJ (2005) Geochemistry and origin of neoproterozoicgranitoids of Meghalaya, Northeast India: implications for linkage with amalgamation of Gondwana supercontinent. Gondwana Res 8:421–432. https://doi.org/10.1016/S1342-937X(05)71144-8

    Article  Google Scholar 

  • Gogoi A, Majumdar D, Cottle J, Dutta P (2019) Geochronology and geochemistry of Mesoproterozoic porphyry granitoids in the northern Karbi Hills, NE India: Implications for early tectonic evolution of the Karbi Massif. J Asian Earth Sci 79:65–79. https://doi.org/10.1016/j.jseaes.2019.04.013

    Article  Google Scholar 

  • Hammarstrom JM, Zen E-An (1986) Aluminium in hornblende: an empirical igneous geobarometer. Am Mineral 71:1297–1313

    Google Scholar 

  • Harris NBW, Pearce JA, Tindle AG (1986) Geochemical characteristics of collision zone magmatism. In: Coward MP, Ries AC (eds) Collision tectonics. https://doi.org/10.1144/GSL.SP.1986.019.01.04

  • Hazarika G, Basumatary P, Prakash T, Chauhan H, Gogoi B (2022) Magma mixing dynamics in a vertically zoned granitic magma chamber inferred from feldspar disequilibrium assemblage and biotite composition: a case study from the Mikir Massif, eastern India. Acta Geochim 41:453–469. https://doi.org/10.1007/s11631-022-00534-1

    Article  Google Scholar 

  • Hazarika G, Chauhan H, Khandelwal D, Pandey AC, Saikia A, Gogoi B (2023) HR-SIMS U-Pb geochronology and petrogenesis of the Bamuni Pluton, Mikir Massif, Northeast India: implications for final assembly of the eastern Gondwana landmass. Manuscript communicated and under review in Lithos.

  • Hazarika G, Gogoi B (2022) Fractal analysis and geochemical characterisation of mafic magmatic enclaves in the Kathalguri Pluton, Mikir Massif (Northeast India): implications for Pan-African bimodal magmatism. Int J Earth Sci. https://doi.org/10.1007/s00531-022-02259-1

    Article  Google Scholar 

  • Holland TJB, Blundy JD (1994) Non-ideal interactions in calcic amphiboles and their bearing on amphibole–plagioclase thermometry. Contrib Mineral Petrol 116:433–447. https://doi.org/10.1007/BF00310910

    Article  Google Scholar 

  • Irvine TN, Baragar WRA (1971) A guide to the geochemical classification of the common volcanic rocks. Can J Earth Sci 8:523–548. https://doi.org/10.1139/e71-055

    Article  Google Scholar 

  • Jiang YH, Jiang SY, Ling HF, Zhou XR, Rui XJ, Yang WZ (2002) Petrology and geochemistry of shoshonitic plutons from the western Kunlun orogenic belt, Xinjiang, northwestern China: implications for granitoid geneses. Lithos 63:165–187. https://doi.org/10.1016/S0024-4937(02)00140-8

    Article  Google Scholar 

  • Johnson MC, Rutherford MJ (1989) Experimental calibration of the aluminum-in hornblende geobarometer with application to Long Valley Caldera (California) volcanic rocks. Geology 17:837–841

    Article  Google Scholar 

  • Kamani MSK, Wang W, Tchouankoue JP, Huang SF, Yomeun B, Xue EK, Lu GM (2021) Neoproterozoic syn-collision magmatism in the Nkondjock region at the northern border of the Congo craton in Cameroon: Geodynamic implications for the Central African orogenic belt. Precambrian Res 353:106015. https://doi.org/10.1016/j.precamres.2020.106015

    Article  Google Scholar 

  • Kayal JR, De R (1991) Microseismicty and tectonic in northeast India. Bull Seismol Soc Am 81:131–138. https://doi.org/10.1785/BSSA0810010131

    Article  Google Scholar 

  • Kennedy WQ (1964) The structural deformation of Africa in the Pan-African (±500 m.y.) tectonic episode. Leeds University Research Institute African Geology, Annual Report 8:48–49

    Google Scholar 

  • Köksal S, Toksoy-Köksal F, Göncüoğlu MC, Möller A, Gerdes A, Frei D (2013) Crustal source of the Late Cretaceous Satansarı monzonite stock (central Anatolia–Turkey) and its significance for the Alpine geodynamic evolution. J Geodyn 65:82–93

    Article  Google Scholar 

  • Kröner A, Stern J (2004) Pan-African orogeny. In: Encyclopedia of geology, vol 1.

  • Kroner A, Windley BF, Jaeckel P, Brewer TS, Razakamanana T (1999) New zircon ages and regional significance for the evolution of the Pan-African orogen in Madagascar. J Geol Soc 156:1125–1135. https://doi.org/10.1144/gsjgs.156.6.1125

    Article  Google Scholar 

  • Kumar R, Rajendran GK, Prakash TN (1990) Charnockite-khondalite and Tertiary-Quarternary sequences of southern Kerala. Excursion guide, Geol Soc India.

  • Kumar S, Pieru T, Rino V, Hayasaka Y (2017) Geochemistry and U-Pb SHRIMP zircon geochronology of microgranular enclaves and host granitoids from the South Khasi Hills of the Meghalaya Plateau, NE India: evidence of synchronous mafic–felsic magma mixing–fractionation and diffusion in a post-collision tectonic environment during the Pan-African orogenic cycle. Geol Soc Spec Publ 457:253–289. https://doi.org/10.1144/SP457.10

    Article  Google Scholar 

  • Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkalies-silica diagram. J Petrol 27:745–750. https://doi.org/10.1093/petrology/27.3.745

    Article  Google Scholar 

  • Leake BE, Woolley AR, Arps CES, Birch WD, Gilbert MC, Grice JD, Howthorne FC, Kato A, Kisch HJ, Krivovichev VG, Linthout K, Laird J, Mandarino JA (1997) Nomenclature of amphiboles. Report of the subcommittee on amphiboles of the International Mineralogical Association: commission on new mineral names. Mineral Mag 61:295–321. https://doi.org/10.1180/minmag.1997.061.405.13

    Article  Google Scholar 

  • Li HR, Qian Y, Sun FY, Li L (2020) Geochemistry, zircon geochronology, and isotopic systematics of the Zhanbuzhale granites in the East Kunlun, Qinghai Province, northwestern China: implications for the tectonic setting. Can J Earth Sci 57:275–291. https://doi.org/10.1139/cjes-2018-0251

    Article  Google Scholar 

  • Li Z, Pei X, Li R, Bons PD, Pei L, Chen Y, Hussain I (2022) Petrogenesis and tectonic setting of Early Silurian island-arc-type quartz diorite at the southern margin of the East Kunlun orogenic belt: analysis of the evolution of the Proto-Tethyan Ocean. Int J Earth Sci 111:2317–2335. https://doi.org/10.1007/s00531-022-02223-z

    Article  Google Scholar 

  • Liu L, Qiu JS, Li Z (2013) Origin of mafic microgranular enclaves (MMEs) and their host quartz monzonites from the Muchen pluton in Zhejiang Province, Southeast China: implications for magma mixing and crust–mantle interaction. Lithos 160:145–163. https://doi.org/10.1016/j.lithos.2012.12.005

    Article  Google Scholar 

  • Liu S, Hu R, Gao S, Feng C, Qi Y, Wang T, Coulson IM (2008) U-Pb zircon age, geochemical and Sr–Nd–Pb–Hf isotopic constraints on age and origin of alkaline intrusions and associated mafic dikes from Sulu orogenic belt, Eastern China. Lithos 106:365–379. https://doi.org/10.1016/j.lithos.2008.09.004

    Article  Google Scholar 

  • Majumdar D, Dutta P (2016) Geodynamic evolution of a Pan-African granitoid of extended Dizo Valley in Karbi Hills, NE India: evidence from geochemistry and isotope geology. J Asian Earth Sci 117:256–268. https://doi.org/10.1016/j.jseaes.2015.12.015

    Article  Google Scholar 

  • Majumdar D, Dutta S (2007) Geological investigations on sulphide ore occurrences in magmatic complex, Mikir Hills, Assam. IGC Bull 17:20. https://doi.org/10.1016/j.jseaes.2015.12.015

    Article  Google Scholar 

  • McDermott F, Harris NBW, Hawkesworth CJ (1996) Geochemical constraints on crustal anatexis: a case study from the Pan-African Damara granitoids of Namibia. Contrib Mineral Petrol 123:406–423. https://doi.org/10.1007/s004100050165

    Article  Google Scholar 

  • Meert JG (2003) A synopsis of events related to the assembly of eastern Gondwana. Tectonophysics 362:1–40. https://doi.org/10.1016/S0040-1951(02)00629-7

    Article  Google Scholar 

  • Meert JG, Van der Voo R (1997) The assembly of Gondwana 800–550 Ma. J Geodyn 23:223–236. https://doi.org/10.1016/S0264-3707(96)00046-4

    Article  Google Scholar 

  • Müller D, Groves DI, Müller D (1995) Potassic igneous rocks and associated gold copper mineralization. Springer, Berlin, p 56

    Book  Google Scholar 

  • Nandy DR (2001) Geodynamics of northeastern India and the adjoining region; Acad. Publ. Kolkata, pp 111–130

  • Ngoniri AH, Tamehe LS, Ganno S, Ngnotue T, Chen Z, Li H, Nzenti JP (2021) Geochronology and petrogenesis of the Pan-African granitoids from Mbondo-Ngazi Tina in the Adamawa-Yadé Domain, Central Cameroon. Int J Earth Sci 110:2221–2245. https://doi.org/10.1007/s00531-021-02071-3

    Article  Google Scholar 

  • Pandey BK, Krishna V, Chabria T (1998) An overview of Chotanagpur Gneiss-Granulite Complex and adjoining sedimentary sequences, eastern and central India. International Seminar on Precambrian Crust in Eastern and Central India. Abstract Volume UNESCO-IUGS-IGCP-368, pp 131–135.

  • Pearce JA (1996) Sources and settings of granitic rocks. Episodes 19:120–125

    Article  Google Scholar 

  • Pearce JA, Harris NBW, Tindle AG (1984) Trace elements discrimination diagrams for the geotectonic interpretation of granite rocks. J Petrol 25:956–983. https://doi.org/10.1093/petrology/25.4.956

    Article  Google Scholar 

  • Pearce JA, Peate DW (1995) Tectonic implications of the composition of volcanic arc magmas. Annu Rev Earth Planet Sci 23:251–286

    Article  Google Scholar 

  • Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib Mineral Petrol 58:63–81. https://doi.org/10.1007/BF00384745

    Article  Google Scholar 

  • Pouchou JL, Pichoir F (1987) Basic expression of “PAP” computation for quantitative EPMA. Proceedings of ICXOM 11:249–253

    Google Scholar 

  • Rao PN, Kumar RM (1997) Uplift and Tectonics of the Shillong Plateau, Northeast India. J Phys Earth 45:167–176. https://doi.org/10.4294/jpe1952.45.167

    Article  Google Scholar 

  • Rapp RP, Watson EB (1995) Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust-mantle recycling. J Petrol 36:891–931. https://doi.org/10.1093/petrology/36.4.891

    Article  Google Scholar 

  • Rino S, Kon Y, Sato W, Maruyama S, Santosh M, Zhao D (2008) The Grenvillian and Pan-African orogens: world’s largest orogenies through geologic time, and their implications on the origin of superplume. Gondwana Res 14:51–72. https://doi.org/10.1016/j.gr.2008.01.001

    Article  Google Scholar 

  • Rudnick RL, Fountain DM (1995) Nature and composition of the continental crust: a lower crustal perspective. Rev Geophys 33:267–309

    Article  Google Scholar 

  • Saini NK, Mukherjee PK, Khanna PP, Purohit KK (2007) A proposed amphibolites reference rock sample (AM-H) from Himachal Pradesh. J Geol Soc India 69:799–802

    Google Scholar 

  • Saini NK, Mukherjee PK, Rathi MS, Khanna PP (2000) Evaluation of energy dispersive x-ray fluorescence spectrometry in the rapid analysis of silicate rocks using pressed powder pellets. X-Ray Spectrom 29:166–172

    Article  Google Scholar 

  • Santosh M, Tanaka K, Yokoyama K, Collins AS (2005) Late Neoproterozoic-Cambrian felsic magmatism along transcrustal shear zones in southern India: U-Pb electron microprobe ages and implications for amalgamation of the Gondwana supercontinent. Gondwana Res 8:31–42. https://doi.org/10.1016/S1342-937X(05)70260-4

    Article  Google Scholar 

  • Sarkar A (1998) Geochronology and geochemistry of mesoproterozoic intrusive plutonites from the eastern segments of the Mahakoshal greenstone belts, Central India. Seminar on Precambrian Crust in Eastern and Central India, Bhubneshwar, IGCP, Bhubneshwar 1998:82–85

    Google Scholar 

  • Sarma KP, Laskar JJ, Devi NR, Mazumdar N, MallikarjunaRao J, Venkateshwaralu M (2015) Geochemistry of Mesoproterozoic metadolerite dykes and sills of Shillong basin, Meghalaya, NE India. Asian J Multidiscip Studies 3:37–47

    Google Scholar 

  • Schmidt MW (1992) Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contrib Mineral Petrol 110:304–310. https://doi.org/10.1007/BF00310745

    Article  Google Scholar 

  • Shand SJ (1943) Eruptive rocks. Their genesis, composition, classification, and their relation to ore-deposits with a chapter on meteorite. Wiley, New York

    Google Scholar 

  • Sial AN, Ferreira VP, Fallick AE, Cruz MJM (1998) Amphibole-rich clots in calc-alkalic granitoids in the Borborema province, northeastern Brazil. J South Am Earth Sci 11:457–471

    Article  Google Scholar 

  • Speer JA (1984) Micas in igneous rocks. Rev Mineral 13:299–356

    Google Scholar 

  • Srivastava RK, Sinha AK (2004) Geochemistry and Petrogenesis of Early Cretaceous sub-alkaline mafic dykes from Swangkre-Rongmil, East Garo Hills, Shillong Plateau, NE India. Proc Ind Acad Sci Earth Planet Sci 113:683–697. https://doi.org/10.1007/BF02704029

    Article  Google Scholar 

  • Stein E, Dietl C (2001) Hornblende thermobarometry of granitoids from the Central Odenwald (Germany) and their implications for the geotectonic development of the Odenwald. Mineral Petrol 72:185–207. https://doi.org/10.1007/s007100170033

    Article  Google Scholar 

  • Stern CR, Kilian R (1996) Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone. Contrib Mineral Petrol 123:263–281. https://doi.org/10.1007/s004100050155

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Spec Publ 42:313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell Sci Publ Carlton 312.

  • Thomas WM, Ernst WG (1990) The aluminum content of hornblende in calc-alkaline granitic rocks: a mineralogic barometer calibrated experimentally to 12 kbars. In: Spencer RJ and Chou IM (ed) Fluid–mineral interactions: a tribute to HP Eugster, vol 2. Geol Soc Spec Publ, pp 59–63.

  • Wang C, Lu Y, He X, Wang Q, Zhang J (2016) The Paleoproterozoic diorite dykes in the southern margin of the North China Craton: insight into rift-related magmatism. Precam Res 277:26–46. https://doi.org/10.1016/j.precamres.2016.02.009

    Article  Google Scholar 

  • Wang W, Cawood PA, Pandit MK, Zhao JH, Zheng JP (2019) No collision between Eastern and Western Gondwana at their northern extent. Geology 47:308–312. https://doi.org/10.1130/G45745.1

    Article  Google Scholar 

  • Wang W, Liu S, Bai X, Li Q, Yang P, Zhao Y, Guo R (2013) Geochemistry and zircon U-Pb–Hf isotopes of the Late Paleoproterozoic Jianping diorite–monzonite–syenite suite of the North China Craton: implications for petrogenesis and geodynamic setting. Lithos 162:175–194. https://doi.org/10.1016/j.lithos.2013.01.005

    Article  Google Scholar 

  • Weaver BL, Tarney J (1984) Empirical approach to estimating the composition of the continental crust. Nature 310:575–577. https://doi.org/10.1038/310575a0

    Article  Google Scholar 

  • Yellappa T, Rao JM (2018) Geochemical characteristics of Proterozoic granite magmatism from Southern Granulite Terrain, India: Implications for Gondwana. J Earth Syst Sci 127:22. https://doi.org/10.1007/s12040-018-0923-6

    Article  Google Scholar 

  • Yin A, Dubey CS, Webb AAG, Kelty TK, Grove M, Gehrels GE, Burgess WP (2010) Geologic correlation of the Himalayan orogen and Indian craton: Part 1. Structural geology, U-Pb zircon geochronology, and tectonic evolution of the Shillong Plateau and its neighboring regions in NE India. Geol Soc Am Bull 122:336–359. https://doi.org/10.1130/B26461.1

    Article  Google Scholar 

  • Yomeun BS, Wang W, Kamani MSK, Tchouankoue JP, Jiang YD, Huang SF, Basua EAA (2022a) Geochronology, geochemistry and Sr-Nd, Hf-O isotope systematics of the Linte massif, Adamawa-Yade domain, Cameroon: implications on the evolution of the Central African Fold Belt. Precam Res 375:106675. https://doi.org/10.1016/j.precamres.2022.106675

    Article  Google Scholar 

  • Yomeun BS, Wang W, Tchouankoue JP, Kamani MSK, Ndonfack KIA, Huang SF, Xue EK (2022b) Petrogenesis and tectonic implication of Neoproterozoic I-type granitoids and orthogneisses in the Goa-Mandja area, Central African Fold Belt (Cameroon). Lithos 420:106700. https://doi.org/10.1016/j.lithos.2022.106700

    Article  Google Scholar 

Download references

Acknowledgements

We would like to express our sincere gratitude to two anonymous reviewers for their insightful and constructive comments. We thank Dr. Binbin Wang for editorial handling of the manuscript. The authors acknowledge the DST-SERB grant vide Project No. CRG/2020/002635 and CSIR-JRF fellowship No. 09/1236(11154)/2021-EMR-I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bibhuti Gogoi.

Ethics declarations

Conflict of interest

The authors declare that in this present work there is no conflict of interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1: Fig. S1 Nomenclature and classification of plagioclase from the Borjuri diorites. (JPG 311 kb)

11631_2023_613_MOESM2_ESM.jpg

Supplementary file 2: Fig. S2 Nomenclature and classification of alkali feldspar from the Borjuri diorites. (JPG 297 kb)

Supplementary file 3: Fig. S3 Nomenclature and classification of amphibole from the Borjuri diorites. (JPG 391 kb)

11631_2023_613_MOESM4_ESM.jpg

Supplementary file 4: Fig. S4 Plot of Si versus Na+Ca+K discrimination diagram to distinguish igneous and metamorphic amphiboles (Sial et al.1998). (JPG 288 kb)

Supplementary file 5: Fig. S5 Nomenclature and classification of biotite from the Borjuri diorites. (JPG 308 kb)

Supplementary file 6 (XLSX 25 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prakash, T., Saikia, A., Basumatary, P. et al. Petrogenesis of the Borjuri diorite pluton in the Mikir Massif of Northeast India: implications for post-collisional intermediate magmatism during the Pan-African orogeny. Acta Geochim 42, 747–764 (2023). https://doi.org/10.1007/s11631-023-00613-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-023-00613-x

Keywords

Navigation