Skip to main content
Log in

Rare earth element signatures of Paleoproterozoic Sallopat phosphorites of Aravalli Basin, India: implications for diagenetic effects and depositional environment

  • Original Article
  • Published:
Acta Geochimica Aims and scope Submit manuscript

Abstract

As a repository of REE, the Paleoproterozoic phosphorite of the Aravalli Basin in India is explored time to time. Paleoproterozoic phosphorite deposits of the Sallopat sub-basin Banswara district of the Aravalli Supergroup show moderate REE concentrations much lower than that of average marine phosphorites. Different ratios and PAAS-normalized REE distribution patterns reflect MREE enrichment over LREE and HREE in these phosphorites. MREE enrichment confirmed by (Sm/Yb)N versus (Sm/Pr)N relationship and attributed to the selective uptake by cyanobacteria and mixing of riverine inputs. Y/Ho, La/Ce and Er/Nd ratios confirm that the REE in Sallopat phosphorites might have been affected by the argillaceous terrigenous and plagioclase-rich sediments probably derived from Banded Gneissic Complex. Diagenetic modeling indicates that REE were concentrated during early diagenetic processes with limited weathering influence. Moderate negative to low Ce anomaly depicts oxic to sub-oxic conditions of seawater due to oxidation of Ce3+ to Ce4+ whereas Eu3+ reduced to Eu2+ indicating positive Eu-anomaly and reducing conditions as well during the deposition. These anomalies may be due to the stratified restricted marine environment of upwelling and mingling of organic-rich anoxic deep water with oxic upper seawater prior to the formation of phosphorite deposits in the embayment. Enrichment of REE in Sallopat phosphorite relies on various physico-chemical conditions. These phosphorites may have been formed in restricted marine water which was influenced by extra clastic sediment input carried out by fluvial systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abedini A, Calagari AA (2017) REEs geochemical characteristics of lower Cambrian phosphatic rocks in the Gorgan-Rasht Zone, northern Iran: Implications for diagenetic effects and depositional conditions. J Afr Earth Sci 135:115–124

    Article  Google Scholar 

  • Abedini A, Rezaei Azizi M, Calagari AA, Cheshmehsari M (2017) Rare earth element geochemistry and tetrad effects of the Dalir phosphatic shales, northern Iran. Neues Jahrbuch Für Geologie Und Paläontologie-Abhandlungen 286:169–188

    Article  Google Scholar 

  • Altschuler ZS, Berman S, Cuttitta F (1966) Rare Earths in phosphorites-geochemistry and potential recovery. Open-File Rep 6:66–3. https://doi.org/10.3133/ofr663

    Article  Google Scholar 

  • Armstrong-Altrin JS, Verma SP, Madhavaraju J (2003) Anonymous. Geochemistry of upper Miocene Kudankulam limestones, southern India. Inter Geology Rev 45(1):6–26

    Article  Google Scholar 

  • Awadalla GS (2010) Geochemistry and microprobe investigations of Abu Tartur REE-bearing phosphorite, Western Desert, Egypt. J Afr Earth Sci 57:66

    Article  Google Scholar 

  • Banerjee SK, NK Sood (1989) Geology of Sallopat phosphorite deposit. In: Phosphorite of India, Mem. 13. DM Banerjee, Geol Soc of India, Bangalore, India, pp 39–41

  • Banerjee DM, Schidlowski M, Arneth JD (1986) Genesis of upper Proterozoic Cambrian phosphorite deposits of India: isotopic inferences from carbonate fluorapatite, carbonate and organic carbon. Precambrian Res 33(1–3):239–253

    Article  Google Scholar 

  • Barman G (1974) Report on the study of stromatolites from the Aravalli Supergroup in Sallopat area, Banswara district, Rajasthan. Report 2:66

    Google Scholar 

  • Bau M (1991) Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium. Chem Geol 93(3):219–230

    Article  Google Scholar 

  • Bau M, Dulski P (1996) Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambr Res 79(1):37–55

    Article  Google Scholar 

  • Bellanca A, Masetti D, Neri R (1997) Rare earth elements in limestone/marlstone couplets from the Albian-Cenomanian Cismon section (Venetian region, northern Italy): assessing REE sensitivity to environmental changes. Chem Geol 141(3):141–152

    Article  Google Scholar 

  • Bertrand-Sarfati J, Flicoteaux R, Moussine-Pouchkine A (1997) Lower Cambrian apatitic stromatolites and phospharenites related to the glacio-eustatic cratonic rebound (Sahara, Algeria). J Sediment Res 67(5):957–974

    Google Scholar 

  • Bushinsky GI (1969) Old phosphorites of Asia and their genesis. Israel Program for Scientific Translation, Jerusalem, p 266

  • Chauhan DS, Trivedi SK (1998) Deformation pattern in the Precambrian stromatolitic phosphorite of Sallopat area, Rajasthan, India. The Indian Precambrian, Scientific Publisher, Jodhpur, pp 159–170

  • Chen J, Algeo TJ, Zhao L, Chen ZQ (2015) Diagenetic uptake of rare earth elements by bioapatite, with an example from Lower Triassic conodonts of South China. Earth Sci Rev 149:181–202

    Article  Google Scholar 

  • Chunhua S, Ruizhong H (2005) REE geochemistry of Early Cambrian phosphorites from Gezhongwu Formation at Zhijin, Guizhou Province, China. Chin J Geoch 24(2):166–172

    Article  Google Scholar 

  • Crosby CH, Bailey JV, Sharma M (2014) Fossil evidence of iron-oxidizing chemolithotrophy linked to phosphogenesis in the wake of the Great Oxidation Event. Geology 42(11):1015–1018

    Article  Google Scholar 

  • De Baar HJW, German CR, Elderfield H, Gaans PV (1988) Rare earth element distributions in anoxic waters of the Cariaco Trench. Geochem et Cosmo Acta 52(5):1203–1219

    Article  Google Scholar 

  • Deb M, Thorpe RA (2004) Sediment-hosted lead-zinc sulphide deposits. Narosa Publishing House, India, pp 246–263

    Google Scholar 

  • Deng Y, Ren J, Guo Q, Cao J, Wang H, Liu C (2017) Rare earth element geochemistry characteristics of seawater and porewater from deep sea in western Pacific. Sci Rep 7(1):16539

    Article  Google Scholar 

  • Eker CS, Sipahi F, Kaygusuz A (2012) Trace and rare earth elements as indicators of provenance and depositional environments of Lias cherts in Gumushane, NE Turkey. Chemie der Erde-Geoche 72(2):167–177

    Article  Google Scholar 

  • Elderfield H, Pagett R (1986) Rare earth elements in ichthyoliths: variations with redox conditions and depositional environment. Sci Total Enviro 49: 75–197

  • Emsbo P, McLaughlin PI, Breit GN, Du Bray EA, Koenig AE (2015) Rare earth elements in sedimentary phosphate deposits: solution to the global REE crisis? Gond Res 27(2):776–785

    Article  Google Scholar 

  • Fazio AM, Scasso RA, Castro LN, Carey S (2007) Geochemistry of rare earth elements in earlYdiagenetic miocene phosphatic concretions of Patagonia, Argentina: phosphogenetic implications. Deep-Sea Res II 54:1414–1432

    Article  Google Scholar 

  • Gadd MG, Layton-Matthews D, Peter JM (2016) Non-hydrothermal origin of apatite in SEDEX mineralization and host rocks of the Howard’s Pass district, Yukon, Canada. Am Min 101(5):1061–1071

    Article  Google Scholar 

  • Garnit H, Bouhlel S, Barca D, Chtara C (2012) Application of LA-ICP-MS to sedimentary phosphatic particles from Tunisian phosphorite deposits: Insights from trace elements and REE into paleo-depositional environments. Chemie Der Erde-Geochem 72(2):27–139

    Article  Google Scholar 

  • German CR, Elderfield H (1989) Rare earth elements in Saanich Inlet, British Columbia, a seasonally anoxic basin. Geoch et Cosmo Acta 53(10):2561–2571

    Article  Google Scholar 

  • German CR, Elderfield H (1990) Application of the Ce anomaly as a paleoredox indicator: the ground rules. Paleoceanography 5:823–833

    Article  Google Scholar 

  • Goonan TG (2011) Rare earth elements—end use and recyclability: U.S. Geological Survey Scientific Investigations Report 2011-5094

  • Grandjean P, Cappetta H, Michard A, Albare`de F, (1987) The assessment of REE patterns and 143Nd/144Nd ratios in fish remains. Earth Planet Sci Lett 84(2):181–196

    Article  Google Scholar 

  • Grandjean-Lécuyer P, Feist R, Albarède F (1993) Rare earth elements in old biogenic apatites. Geoch et Cosmo Acta 57(11):2507–2514

    Article  Google Scholar 

  • Haley BA, Klinkhammer GP, McManus J (2004) Rare earth elements in pore waters of marine sediments. Geochm et Cosm Acta 68(6):1265–1279

    Article  Google Scholar 

  • Hein JR, Koschinsky A, Mikesellan M, Mizellan K, Glenn CR, Wood R (2016) Marine phosphorites as potential resources for heavy rare earth elements and yttrium, pp 1–2

  • Hannigan RE, Sholkovitz ER (2001) The development of middle rare earth element enrichments in freshwaters: weathering of phosphate minerals. Chem Geol 175(3):495–508

  • Hoyle J, Elderfield H, Gledhill A, Greaves M (1984) The behavior of the rare earth elements during mixing river and sea waters, p 48

  • Ilyin AV (1998) Rare-earth geochemistry of ‘old’ phosphorites and probability of syngenetic precipitation and accumulation of phosphate. Chem Geol 144(3):243–256

    Article  Google Scholar 

  • Imamoglu MS, Nathan Y, Çoban H, Soudry D, Glenn C (2008) Geochemical, mineralogical and isotopic signatures of the Semikan, West Kasrık “Turkish” phosphorites from the Derik–Mazıdağı–Mardin area, SE Anatolia. Int J Earth Sci 98(7):1679

    Article  Google Scholar 

  • Jarvis I, Burnett WC, Nathan Y, Almbaydin FSM, Attia AKM, Castrol LN, Flicoteaux R (1994) Phosphorite geochemistry state-of-the-art and environmental concerns. Eclogae Geol Helvetiae 87(3):643–700

    Google Scholar 

  • Jiang SY, Zhao HX, Chen YQ, Yang T, Yang JH (2007) Trace and rare earth element geochemistry of phosphate nodules from the lower Cambrian black shale sequence in the Mufu Mountain of Nanjing, Jiangsu province, China. Chem Geol 244:584–604

    Article  Google Scholar 

  • Johannesson KH, Hawkins DL, Cortés A (2006) Do Archean chemical sediments record ancient seawater rare earth element patterns? Geoch et Cosmo Acta 70(4):871–890

    Article  Google Scholar 

  • Kamber BS, Webb GE (2001) The geochemistry of late Archaean microbial carbonate: implications for ocean chemistry and continental erosion history. Geoch Cosm Acta 65(15):2509–2525

    Article  Google Scholar 

  • Kato Y, Nakao K, Isozaki Y (2002) Geochemistry of Late Permian to Early Triassic pelagic cherts from southwest Japan: implications for an oceanic redox change. Chem Geol 182(1):15–34

    Article  Google Scholar 

  • Kato Y, Fujinaga Nakamura K, Takaya Y, Kitamura K, Ohta J, Toda R, Nakashima T, Iwamori H (2011) Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements. Nat Geosci 4:535

    Article  Google Scholar 

  • Kemp RA, Trueman CN (2003) Rare earth elements in Solnhofen biogenic apatite: geochemical clues to the palaeoenvironment. Sediment Geol 155(1):109–127

    Article  Google Scholar 

  • Khan KF, Khan S (2016) Petro-Mineralogical Studies of Phosphorite Deposit of Sallopat Block of Banswara District, Rajasthan, India. Int J Environ Chem Ecol Geol Geophys Eng 10(6):689–696

    Google Scholar 

  • Khan KF, Dar SA, Khan SA (2012) Rare earth element (REE) geochemistry of phosphorites of the Sonrai area of Paleoproterozoic Bijawar basin, Uttar Pradesh, India. J Rare Earths 30(5):507–514

    Article  Google Scholar 

  • Khan SA, Khan KF, Dar SA (2016) REE geochemistry of Early Cambrian phosphorites of Masrana and Kimoi blocks, Uttarakhand, India. Arab J Geosci 9(6):456

    Article  Google Scholar 

  • Kidder DL, Eddy-Dilek CA (1994) Rare-earth element variation in phosphate nodules from midcontinent Pennsylvanian cyclothems. J Sediment Res 64(3a):584–592

    Google Scholar 

  • Kidder DL, Krishnaswamy R, Mapes RH (2003) Elemental mobility in phosphatic shales during concretion growth and implications for provenance analysis. Chem Geol 198(3–4):335–353

    Article  Google Scholar 

  • Krajewski KP, Leśniak PM, Łącka B, Zawidzki P (2000) Origin of phosphatic stromatolites in the Upper Cretaceous condensed sequence of the Polish Jura Chain. Sediment Geol 136(1):89–112

    Article  Google Scholar 

  • Liu Y-G, Miah MRU, Schmitt RA (1988) Cerium: a chemical tracer for paleo-oceanic redox conditions. Geoch et Cosmo Acta 52(6):1361–1371

    Article  Google Scholar 

  • Lumiste K, Mänd BJ, Paiste P, Lang L, Lapland A, Kirsimäe K (2019) REE+Y uptake and diagenesis in Recent sedimentary apatites. Chem Geol 525:268–281

    Article  Google Scholar 

  • Madhavaraju J, González-León CM, Lee YL, Armstrong-Altrin JS, Reyes-Campero LM (2010) Geochemistry of the Mural Formation (Aptian-Albian) of the Bisbee Group, Northern Sonora, Mexico. Cretac Res 31(4):400–414

    Article  Google Scholar 

  • Mazumdar A, Tanaka K, Takahashi T, Kawabe I (2003) Characteristics of rare earth element abundances in shallow marine continental platform carbonates of Late Neoproterozoic successions from India. Geochem J 37(2):277–289

    Article  Google Scholar 

  • McArthur JM, Walsh JN (1984) Rare-earth geochemistry of phosphorites. Chem Geol 47(3–4):191–220

    Article  Google Scholar 

  • McClellan GH, Lehr JR (1969) Crystal chemical investigation of natural apatite. Am Mineral 54:1374–1391

    Google Scholar 

  • McKenzie NR, Hughes NC, Myrow PM, Banerjee DM, Deb M, Planavsky NJ (2013) New age constraints for the Proterozoic Aravalli-Delhi successions of India and their implications. Precam Res 238:120–128

    Article  Google Scholar 

  • Mehra SL, Biswas C (1969) Report on the investigation for phosphorite in parts of Udaipur, Dungarpur and Banswara district, Rajasthan. Unpublished Prog. Rep

  • Murray RW, Ten BMRB, Gerlach DC, Russ GP, Jones DL (1991) Rare earth, major, and trace elements in chert from the Franciscan Complex and Monterey Group, California: assessing REE sources to fine-grained marine sediments. Geoch et Cosmo Acta 55(7):1875–1895

    Article  Google Scholar 

  • Nagender NB, Iwan R, Maruthadu S, Pluge WL (1992) Rare Earth element patterns of the Central Indian Basin sediments related to their lithology. Geophys Res Lett 19(12):1197–1200

    Article  Google Scholar 

  • Nozaki Y, Zhang J, Amakawa H (1997) The fractionation between Y and Ho in the marine environment. Earth Planet Sci Lett 148(1):329–340

    Article  Google Scholar 

  • Nozaki Y, Lerche D, Alibo DS, Snidvongs A (2000) The estuarine geochemistry of rare earth elements and indium in the Chao Phraya River, Thailand. Geoch et Cosmo Acta 64(23):3983–3994

    Article  Google Scholar 

  • Olivarez AM, Owen RM (1991) The europium anomaly of seawater: implications for fluvial versus hydrothermal REE inputs to the oceans. Chem Geol 92(4):317–328

    Article  Google Scholar 

  • Papineau D, Purohit R, Goldberg T, Pi D, Shields GA, Bhu H, Steel A, Fogel ML (2009) High primary productivity and nitrogen cycling after the Paleoproterozoic phosphogenic event in the Aravalli Supergroup, India. Precam Res 171(1–4):37–56

    Article  Google Scholar 

  • Papineau D, Purohit R, Fogel ML, Shields-Zhou GA (2013) High phosphate availability as a possible cause for massive cyanobacterial production of oxygen in the Paleoproterozoic atmosphere. Earth Planet Sci Lett 362:225–236

    Article  Google Scholar 

  • Picard S, Lécuyer C, Barrat J-A, Garcia JP, Dromart G, Sheppard SMF (2002) Rare earth element contents of Jurassic fish and reptile teeth and their potential relation to seawater composition (Anglo-Paris Basin, France and England). Cheml Geol 186(1):1–16

    Google Scholar 

  • Piper DZ (1974) Rare earth elements in the sedimentary cycle: a summary. Chem Geol 14(4):285–304

    Article  Google Scholar 

  • Rao VP, Michard A, Naqvi SWA, Bottcher ME, Krishnaswamy R, Thamban M, Natarajan R, Borole DV (2002) Quaternary phosphorites off the southeast coast of India. Chem Geol 182(2):483–502

    Article  Google Scholar 

  • Reynard B, Lécuyer C, Grandjean P (1999) Crystal-chemical controls on rare earth element concentrations in fossil biogenic apatite and implications for paleoenvironmental reconstructions. Chem Geol 155:233–241

    Article  Google Scholar 

  • Roy AB, Jakhar SR (2002) Geology of Rajasthan (NW India) Precambrian to Recent. Scientific Publishers (India), Jodhpur

  • Roy AB, Paliwal BS (1981) Evolution of lower proterozoic epicontinental deposits: Stromatol1te-bearing Aravalli rocks of Udaipur, Rajasthan, India. Precamb Res 14:49–74

    Article  Google Scholar 

  • Sarangi S, Gopalan K, Roy AB, Sreenivas B, Sharma SD (2006) Pb-Pb age of the carbonates of Jhamarkotra Formation constraining the age of the Aravalli Supergroup, Rajasthan. J Geol Soc India 67:442–446

    Google Scholar 

  • Shields G, Stille P (2001) Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: an isotopic and REE study of Cambrian phosphorites. Chem Geol 175(1):29–48

    Article  Google Scholar 

  • Stanley JK, Byrne RH (1990) The influence of solution chemistry on REE uptake by Ulva lactuca L. in seawater. Geoch et Cosmo Acta 54(6):1587–1595

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford

    Google Scholar 

  • Tlig S, Sassi A, Belayouni H, Michel D (1987) Distribution de l’uranium, du thorium, du zirconium, du hafnium et des terres rares (TR) dans des grains de phosphates sédimentaires. Chem Geol 62(3):209–221

    Article  Google Scholar 

  • Tribovillard N, Algeo TJ, Lyons T, Riboulleau A (2006) Trace metals as paleoredox and paleoproductivity proxies: an update. Chem Geol 232(1):12–32

    Article  Google Scholar 

  • Wang YL, Liu YG, Schmitt RA (1986) Rare earth element geochemistry of South Atlantic deep sea sediments: Ce anomaly change at ~54 My. Geoch et Cosmo Acta 50(7):1337–1355

    Article  Google Scholar 

  • Watkins RT, Nathan Y, Bremner JM (1995) Rare earth elements in phosphorite and associated sediment from the Namibian and South African continental shelves. Mar Geol 129(1–2):111–128

    Article  Google Scholar 

  • Wright J, Schrader H, Holser WT (1987) Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite. Geoch et Cosmo Acta 51(3):631–644

    Article  Google Scholar 

  • Xin H, Jiang S, Yang J, Wu H, Pi D (2016) Rare earth element geochemistry of phosphatic rocks in Neoproterozoic Ediacaran Doushantuo Formation in Hushan Section from the Yangtze Gorges Area, South China. J Earth Sci 27(2):204–210

    Article  Google Scholar 

  • Yardley BWD (1985) The continental crust: its composition and evolution by S. R. Taylor and S. M. McClennan, Blackwell Scientific Publications, Oxford. Geol J 21(1):85–86

  • Zanin YN, Zamirailova AG, Fomin AN (2002) Catagenesis and rare earth element geochemistry of phosphorites from the Cambrian Kuonamka Formation, Siberian Platform. Geochemi Int 40(7):698–704

    Google Scholar 

  • Zhao L, Chen ZQ, Algeo TJ (2013) Rare-earth element patterns in conodont albid crowns: evidence for massive inputs of volcanic ash during the latest Permian biocrisis? Glob Planet Change 105:135–151

    Article  Google Scholar 

  • Zhu B, Jiang SY (2017) A LA-ICP-MS analysis of rare earth elements on phosphatic grains of the Ediacaran Doushantuo phosphorite at Weng’an, South China: implication for depositional conditions and diagenetic processes. Geol Mag 154(6):1381–1397

    Article  Google Scholar 

  • Zhu B, Jiang SY, Yang JH, Pi D, Ling HF, Chen YQ (2014) Rare earth element and Sr Nd isotope geochemistry of phosphate nodules from the lower Cambrian Niutitang Formation, NW Hunan Province, South China. Palaeogeogr Palaeoclimatol Palaeoecol 398:132–214

    Article  Google Scholar 

Download references

Acknowledgements

The authors are obliged to the Chairman, Department of Geology, Aligarh Muslim University, Aligarh for providing the required facilities for this work. The second author is also thankful to the Head Department of Geology, Banaras Hindu University, and  the Institute of Eminence (IoE), BHU for providing necessary facilities. We express our sincere gratitude to the Director, CSIR-NGRI, Hyderabad permitting us for geochemical analysis. Our special thanks are due to Dr. Jaffri S. S. H., Scientist-G (Retd.), Dr. Manikyamba. C., Head, Geochemistry Division, CSIR-NGRI, Hyderabad for their cooperation during geochemical analyses. The University Grants Commission, New Delhi is also acknowledged for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samsuddin Khan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, S., Dar, S.A., Khan, K.F. et al. Rare earth element signatures of Paleoproterozoic Sallopat phosphorites of Aravalli Basin, India: implications for diagenetic effects and depositional environment. Acta Geochim 42, 726–738 (2023). https://doi.org/10.1007/s11631-023-00612-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-023-00612-y

Keywords

Navigation