Skip to main content
Log in

A review of GEMC method and its improved algorithms

  • Original Article
  • Published:
Acta Geochimica Aims and scope Submit manuscript

Abstract

Gibbs Ensemble Monte Carlo (GEMC) is a molecular simulation method commonly used for simulating phase equilibrium. This method has been proposed since 1987 and applied in many fields, such as geology, planetary science, chemical engineering, material science, etc. GEMC method combines canonical (NVT), isobaric-isothermal (NPT), and grand canonical (μVT) Monte Carlo techniques in a single simulation. The GEMC method was developed on the fundamental law of phase equilibrium that chemical potentials of each phase all equal. Two key factors affect the rationality and reliability of GEMC simulations: 1. particles can be efficiently moved in/out from certain phase during simulation; 2. samplings can represent the whole system well, in other words, samplings hold good ergodicity. In addition, various parallel methods have been developed to improve the simulation efficiency. In this review, an introduction to the theoretical fundamentals, improvements on particle movement and sampling protocols, acceleration techniques and some applications of the GEMC method will be presented. This is the first integrated review introducing the fundamentals, improvements and applications of the GEMC simulation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  • Adams DJ (1988) The implementation of fluid phase Monte Carlo on the DAP. J Comput Phys 75(1):138–150

    Article  Google Scholar 

  • Agrawal R, Kofke DA (1995) Thermodynamic and structural properties of model systems at solid-fluid coexistence. Mol Phys 85(1):43–59

    Article  Google Scholar 

  • Ahunbay MG, Kranias S, Lachet V, Ungerer P (2005) Prediction of thermodynamic properties of heavy hydrocarbons by Monte Carlo simulation. Fluid Phase Equilib 228:311–319

    Article  Google Scholar 

  • Aimoli CG, de Carvalho DP, Pessoa Filho PA, Maginn EJ, Abreu CRA (2020) Thermodynamic properties and fluid phase equilibrium of natural gas containing CO2 and H2O at extreme pressures typically found in pre-salt reservoirs. J Nat Gas Sci Eng 79:103337

    Article  Google Scholar 

  • Alder BJ, Wainwright TE (1959) Studies in molecular dynamics. I. General method. J Chem Phys 31(2):459–466

    Article  Google Scholar 

  • Allen MP, Tildesley DJ (2017) Computer simulation of liquids. Oxford University Press

    Book  Google Scholar 

  • Amar JG (1989) Application of the Gibbs ensemble to the study of fluid–fluid phase equilibrium in a binary mixture of symmetric non-additive hard spheres. Mol Phys 67(4):739–745

    Article  Google Scholar 

  • Attard P (1993) Simulation of the chemical potential and the cavity free energy of dense hard-sphere fluids. J Chem Phys 98(3):2225–2231

    Article  Google Scholar 

  • Attard P (1997) A grand canonical simulation technique for dense and confined fluids with application to a Lennard-Jones fluid. J Chem Phys 107:3230–3238

    Article  Google Scholar 

  • Bai P, Siepmann JI (2017) Assessment and optimization of configurational-bias Monte Carlo particle swap strategies for simulations of water in the Gibbs ensemble. J Chem Theory Comput 13(2):431–440

    Article  Google Scholar 

  • Bali E, Audétat A, Keppler H (2013) Water and hydrogen are immiscible in Earth’s mantle. Nature 495(7440):220–222

    Article  Google Scholar 

  • Bergermann A, French M, Redmer R (2021a) Gibbs-ensemble Monte Carlo simulation of H2–H2O mixtures. Phys Chem Chem Phys 23(22):12637–12643

    Article  Google Scholar 

  • Bergermann A, French M, Schöttler M, Redmer R (2021b) Gibbs-ensemble Monte Carlo simulation of H2–He mixtures. Phys Rev E 103:013307

    Article  Google Scholar 

  • Boillat JE, Burkhart H, Decker KM, Kropf P (1991) Parallel computing in the 1990s—attacking the software problem. Phys Rep-Rev Sect Phys Lett 207(3–5):141–165

    Google Scholar 

  • Boulougouris GC, Economou IG, Theodorou DN (1998) Engineering a molecular model for water phase equilibrium over a wide temperature range. J Phys Chem B 102(6):1029–1035

    Article  Google Scholar 

  • Bourasseau E, Ungerer P, Boutin A (2002a) Prediction of equilibrium properties of cyclic alkanes by Monte Carlo simulation new anisotropic united atoms intermolecular potential new transfer bias method. J Phys Chem B 106(21):5483–5491

    Article  Google Scholar 

  • Bourasseau E, Ungerer P, Boutin A, Fuchs AH (2002b) Monte Carlo simulation of branched alkanes and long chain n -alkanes with anisotropic united atoms intermolecular potential. Mol Simul 28(4):317–336

    Article  Google Scholar 

  • Bourasseau E, Lachet V, Desbiens N, Maillet J-B, Teuler J-M, Ungerer P (2008) Thermodynamic behavior of the CO2 + NO2/N2O4 mixture: a Monte Carlo Simulation study. J Phys Chem B 112(49):15783–15792

    Article  Google Scholar 

  • Brotz FA, De Pablo JJ (1994) Hybrid Monte Carlo simulation of silica. Chem Eng Sci 49(17):3015–3031

    Article  Google Scholar 

  • Brovchenko I, Geiger A (2002) Water in nanopores in equilibrium with a bulk reservoir—Gibbs ensemble Monte Carlo simulations. J Mol Liq 96–97:195–206

    Article  Google Scholar 

  • Brovchenko I, Paschek D, Geiger A (2000) Gibbs ensemble simulation of water in spherical cavities. J Chem Phys 113(12):5026–5036

    Article  Google Scholar 

  • Brovchenko I, Geiger A, Oleinikova A (2001) Phase equilibria of water in cylindrical nanopores. Phys Chem Chem Phys 3(9):1567–1569

    Article  Google Scholar 

  • Brovchenko I, Geiger A, Oleinikova A (2003) Multiple liquid–liquid transitions in supercooled water. J Chem Phys 118(21):9473–9476

    Article  Google Scholar 

  • Brumby PE, Yuhara D, Hasegawa T, Wu DT, Sum AK, Yasuoka K (2019) Cage occupancies, lattice constants, and guest chemical potentials for structure II hydrogen clathrate hydrate from Gibbs ensemble Monte Carlo simulations. J Chem Phys 150(13):134503

    Article  Google Scholar 

  • Budinský R, Vacek V, Lísal M (2004) Vapor–liquid equilibria of alternative refrigerants and their binaries by molecular simulations employing the reaction Gibbs ensemble Monte Carlo method. Fluid Phase Equilib 222–223:213–220

    Article  Google Scholar 

  • Caillol JM (1994) The liquid-vapour coexistence of charged hard spheres. J Phys Condens Matter 6(23A):A171–A174

    Article  Google Scholar 

  • Camp PJ, Allen MP (1996) Phase coexistence in a pseudo Gibbs ensemble. Mol Phys 88(6):1459–1469

    Article  Google Scholar 

  • Chau R, Hamel S, Nellis WJ (2011) Chemical processes in the deep interior of Uranus. Nat Commun 2(1):203

    Article  Google Scholar 

  • Chen B, Siepmann JI (2000) A novel Monte Carlo algorithm for simulating strongly associating fluids: applications to water, hydrogen fluoride, and acetic acid. J Phys Chem B 104(36):8725–8734

    Article  Google Scholar 

  • Chen B, Siepmann JI, Klein ML (2001) Direct Gibbs ensemble Monte Carlo simulations for solid−vapor phase equilibria: applications to Lennard−Jonesium and carbon dioxide. J Phys Chem B 105(40):9840–9848

    Article  Google Scholar 

  • Chialvo AA, Cummings PT (1993) Structure of mixed solvent electrolyte solutions via Gibbs ensemble Monte Carlo simulation. Mol Simul 11(2–4):163–175

    Article  Google Scholar 

  • Chokbunpiam T, Fritzsche S, Chmelik C, Caro J, Janke W, Hannongbua S (2016) Gate opening effect for carbon dioxide in ZIF-8 by molecular dynamics—confirmed, but at high CO2 pressure. Chem Phys Lett 648:178–181

    Article  Google Scholar 

  • Chun M-S, Phillips RJ (1997) Electrostatic partitioning in slit pores by Gibbs ensemble Monte Carlo simulation. AIChE J 43(5):1194–1203

    Article  Google Scholar 

  • Cracknell RF, Nicholson D, Parsonage NG, Evans H (1990) Rotational insertion bias: a novel method for simulating dense phases of structured particles, with particular application to water. Mol Phys 71(5):931–943

    Article  Google Scholar 

  • Curotto E, Freeman DL, Doll JD (1998) A j-walking algorithm for microcanonical simulations: applications to Lennard-Jones clusters. J Chem Phys 109(5):1643–1647

    Article  Google Scholar 

  • Dang LX, Chang T-M, Panagiotopoulos AZ (2002) Gibbs ensemble Monte Carlo simulations of coexistence properties of a polarizable potential model of water. J Chem Phys 117(7):3522–3523

    Article  Google Scholar 

  • Davalos J, Anderson WR, Phelps RE, Kidnay AJ (1976) Liquid-vapor equilibria at 250.00.deg.K for systems containing methane, ethane, and carbon dioxide. J Chem Eng Data 21(1):81–84

    Article  Google Scholar 

  • de Pablo JJ, Laso M, Suter UW (1992) Estimation of the chemical potential of chain molecules by simulation. J Chem Phys 96(8):6157–6162

    Article  Google Scholar 

  • De Pablo JJ, Prausnitz JM (1989) Phase equilibria for fluid mixtures from monte-carlo simulation. Fluid Phase Equilib 53:177–189

    Article  Google Scholar 

  • Deitrick GL, Scriven LE, Davis HT (1989) Efficient molecular simulation of chemical potentials. J Chem Phys 90(4):2370–2385

    Article  Google Scholar 

  • Deng YF, McCoy RA, Marr RB, Peierls RF, Yasar O (1995) Molecular dynamics on distributed-memory MIMD computers with load balancing. Appl Math Lett 8(3):37–41

    Article  Google Scholar 

  • Denton AR, Schmidt MP (2013) Exploring fluctuations and phase equilibria in fluid mixtures via Monte Carlo simulation. Eur J Phys 34(2):475

    Article  Google Scholar 

  • Do H, Wheatley RJ, Hirst JD (2010) Gibbs ensemble Monte Carlo simulations of binary mixtures of methane, difluoromethane, and carbon dioxide. J Phys Chem B 114(11):3879–3886

    Article  Google Scholar 

  • Duan Z, Mφller N, Weare JH (2004) Gibbs ensemble simulations of vapor/liquid equilibrium using the flexible RWK2 water potential. J Phys Chem B 108(52):20303–20309

    Article  Google Scholar 

  • Erdős M, Galteland O, Bedeaux D, Kjelstrup S, Moultos OA, Vlugt TJH (2020) Gibbs ensemble Monte Carlo simulation of fluids in confinement: relation between the differential and integral pressures. Nanomaterials (basel, Switzerland) 10(2):293

    Article  Google Scholar 

  • Errington JR, Panagiotopoulos AZ (1999) New intermolecular potential models for benzene and cyclohexane. J Chem Phys 111(21):9731–9738

    Article  Google Scholar 

  • Escobedo FA (1998) Novel pseudoensembles for simulation of multicomponent phase equilibria. J Chem Phys 108(21):8761–8772

    Article  Google Scholar 

  • Escobedo FA, de Pablo JJ (1995) Chemical potential and equations of state of hard core chain molecules. J Chem Phys 103(5):1946–1956

    Article  Google Scholar 

  • Escobedo FA, de Pablo JJ (1996) Expanded grand canonical and Gibbs ensemble Monte Carlo simulation of polymers. J Chem Phys 105(10):4391–4394

    Article  Google Scholar 

  • van Rooijen WA, Habibi P, Xu K, Dey P, Vlugt TJH, Hajibeygi H, Moultos OA (2023) Interfacial tensions, solubilities, and transport properties of the H2/H2O/NaCl system: a molecular simulation study. J Chem Eng Data

  • Falcioni M, Deem MW (1999) A biased Monte Carlo scheme for zeolite structure solution. J Chem Phys 110(3):1754–1766

    Article  Google Scholar 

  • Fincham D (1987) Parallel computers and molecular simulation. Mol Simul 1(1–2):1–45

    Article  Google Scholar 

  • Frantz DD, Freeman DL, Doll JD (1990) Reducing quasi-ergodic behavior in Monte Carlo simulations by J-walking: applications to atomic clusters. J Chem Phys 93(4):2769–2784

    Article  Google Scholar 

  • Gao GT, Wang W, Zeng XC (1999) Gibbs ensemble simulation of HCFC/HFC mixtures by effective Stockmayer potential. Fluid Phase Equilib 158–160:69–78

    Article  Google Scholar 

  • Gupta MK, Gardner GC, Hegarty MJ, Kidnay AJ (1980) Liquid-vapor equilibriums for the N2 + CH4 + C2H6 system from 260 to 280 K. J Chem Eng Data 25(4):313–318

    Article  Google Scholar 

  • Habibi P, Rahbari A, Blazquez S, Vega C, Dey P, Vlugt TJH, Moultos OA (2022) A new force field for OH– for computing thermodynamic and transport properties of H2 and O2 in aqueous NaOH and KOH solutions. J Phys Chem B 126(45):9376–9387

    Article  Google Scholar 

  • Hashemi S (2019) Structure of hard ellipses confined in hard wall square. Braz J Phys 49(3):321–332

    Article  Google Scholar 

  • Heffelfinger GS (2000) Parallel atomistic simulations. Comput Phys Commun 128(1):219–237

    Article  Google Scholar 

  • Helled R, Nettelmann N, Guillot T (2020) Uranus and Neptune: origin, evolution and internal structure. Space Sci Rev 216(3):38

    Article  Google Scholar 

  • Henley H, Lucia A (2015) Constant pressure Gibbs ensemble Monte Carlo simulations for the prediction of structure I gas hydrate occupancy. J Nat Gas Sci Eng 26:446–452

    Article  Google Scholar 

  • Honda N, Nagasaka Y (1999) Vapor–liquid equilibria of silicon by the Gibbs ensemble simulation. Int J Thermophys 20(3):837–846

    Article  Google Scholar 

  • Hui W, Zhang XR (2011) A thermodynamic scaling Monte Carlo method to determine the unlike pair interaction parameter. In: 2011 international conference on multimedia technology

  • Johansson E, Bolton K, Theodorou DN, Ahlström P (2007) Monte Carlo simulations of equilibrium solubilities and structure of water in n-alkanes and polyethylene. J Chem Phys 126(22):224902

    Article  Google Scholar 

  • Johnson JK, Panagiotopoulos AZ, Gubbins KE (1994) Reactive canonical Monte Carlo. Mol Phys 81(3):717–733

    Article  Google Scholar 

  • Jones DM, Goodfellow JM (1993) Parallelization strategies for molecular simulation using the Monte Carlo algorithm. J Comput Chem 14(2):127–137

    Article  Google Scholar 

  • Kaminsky R (1994) Monte Carlo evaluation of ensemble averages involving particle number variations in dense fluid systems. Chem Phys 101:4986–4994

    Google Scholar 

  • Kathmann SM, Schenter GK, Garrett BC, Chen B, Siepmann JI (2009) Thermodynamics and kinetics of nanoclusters controlling gas-to-particle nucleation. J Phys Chem C 113(24):10354–10370

    Article  Google Scholar 

  • Kiyohara K (1996) Thermodynamic scaling Gibbs ensemble Monte Carlo: a new method for determination of phase coexistence properties of fluids. Mol Phys 89(4):965–974

    Article  Google Scholar 

  • Kristóf T, Boda D, Szalai I, Henderson D (2000) A Gibbs ensemble Monte Carlo study of phase coexistence in the solvent primitive model. J Chem Phys 113(17):7488–7491

    Article  Google Scholar 

  • KristÓF T, Liszi J (2001) Phase coexistence and critical point determination in polydisperse fluids. Mol Phys 99(3):167–173

    Article  Google Scholar 

  • Kumari B, Bandyopadhyay P, Sarkar SK (2020) Optimising the parameters of the Gibbs Ensemble Monte Carlo simulation of phase separation: the role of multiple relaxation times. Mol Simul 46(8):616–626

    Article  Google Scholar 

  • Laso M, de Pablo JJ, Suter UW (1992) Simulation of phase equilibria for chain molecules. J Chem Phys 97(4):2817–2819

    Article  Google Scholar 

  • Li Y-H, Dillard KH, Robinson RL Jr (1981) Vapor-liquid phase equilibrium for carbon dioxide-n-hexane at 40, 80, and 120 °C. J Chem Eng Data 26(1):53–55

    Article  Google Scholar 

  • Li D, Gao Z, Vasudevan NK, Li H, Gao X, Li X, Xi L (2020) Molecular mechanism for azeotrope formation in ethanol/benzene binary mixtures through Gibbs ensemble Monte Carlo simulation. J Phys Chem B 124(16):3371–3386

    Article  Google Scholar 

  • Lísal M, Smith W, Nezbeda I (1999) Accurate computer simulation of phase equilibrium for complex fluid mixtures. Application to binaries involving isobutene, methanol, methyl tert-butyl ether, and n-butane. J Phys Chem B 103:10496–10505

    Article  Google Scholar 

  • Lísal M, Smith WR, Nezbeda I (2001) Accurate vapour–liquid equilibrium calculations for complex systems using the reaction Gibbs ensemble Monte Carlo simulation method. Fluid Phase Equilib 181(1):127–146

    Article  Google Scholar 

  • Liu S, Yang X (2006) Gibbs ensemble Monte Carlo simulation of supercritical CO2 adsorption on NaA and NaX zeolites. J Chem Phys 124(24):244705

    Article  Google Scholar 

  • Liu L, Yang X, Xu Z (2008) Gibbs ensemble Monte Carlo simulation of adsorption for model surfactant solution in confined slit pores. J Chem Phys 128(18):184712

    Article  Google Scholar 

  • Liu W, Zhang Y, Yin Q-Z, Zhao Y, Zhang Z (2020) Magnesium partitioning between silicate melt and liquid iron using first-principles molecular dynamics: Implications for the early thermal history of the Earth’s core. Earth Planet Sci Lett 531:115934

    Article  Google Scholar 

  • Lopes JNC, Tildesley DJ (1997) Multiphase equilibria using the Gibbs ensemble Monte Carlo method. Mol Phys 92(2):187–196

    Article  Google Scholar 

  • Lorenzen W, Holst B, Redmer R (2009) Demixing of hydrogen and helium at megabar pressures. Phys Rev Lett 102(11):115701

    Article  Google Scholar 

  • Loubeyre P, Letoullec R, Pinceaux JP (1991) A new determination of the binary phase diagram of H2–He mixtures at 296 K. J Phys Condens Matter 3(18):3183

    Article  Google Scholar 

  • Loyens LDJC, Smit B, Esselink K (1995) Parallel Gibbs-ensemble simulations. Mol Phys 86(2):171–183

    Article  Google Scholar 

  • Lu B, Denton AR (2007) Phase separation of charge-stabilized colloids: a Gibbs ensemble Monte Carlo simulation study. Phys Rev E 75(6):061403

    Article  Google Scholar 

  • Lyubartsev A, Martsinovski A, Shevkunov S, Vorontsov-Velyaminov P (1992) New approach to Monte Carlo calculation of the free energy: method of expanded ensembles. J Chem Phys 96(3):1776–1783

    Article  Google Scholar 

  • Macedonia MD, Maginn EJ (1999) A biased grand canonical Monte Carlo method for simulating adsorption using all-atom and branched united atom models. Mol Phys 96(9):1375–1390

    Article  Google Scholar 

  • Makaremi M, Jordan KD, Guthrie GD, Myshakin EM (2015) Multiphase Monte Carlo and molecular dynamics simulations of water and CO2 intercalation in montmorillonite and beidellite. J Phys Chem C 119(27):15112–15124

    Article  Google Scholar 

  • Makimura D, Kunieda M, Liang Y, Matsuoka T, Takahashi S, Okabe H (2013) Application of molecular simulations to CO2-enhanced oil recovery: phase equilibria and interfacial phenomena. SPE J 18(02):319–330

    Article  Google Scholar 

  • Mao Wendy L, Mao H-K, Goncharov Alexander F, Struzhkin Viktor V, Guo Q, Hu J, Shu J, Hemley Russell J, Somayazulu M, Zhao Y (2002) Hydrogen clusters in clathrate hydrate. Science 297(5590):2247–2249

    Article  Google Scholar 

  • Marin-Rimoldi E, Shah JK, Maginn EJ (2015) Monte Carlo simulations of water solubility in ionic liquids: a force field assessment. Fluid Phase Equilib 407:117–125

    Article  Google Scholar 

  • Martin MG, Siepmann JI (1997) Predicting multicomponent phase equilibria and free energies of transfer for alkanes by molecular simulation. J Am Chem Soc 119(38):8921–8924

    Article  Google Scholar 

  • McGrath MJ, Kuo IFW, Ngouana BF, Ghogomu JN, Mundy CJ, Marenich AV, Cramer CJ, Truhlar DG, Siepmann JI (2013) Calculation of the Gibbs free energy of solvation and dissociation of HCl in water via Monte Carlo simulations and continuum solvation models. Phys Chem Chem Phys 15(32):13578–13585

    Article  Google Scholar 

  • McGrother SC, Gubbins KE (1999) Constant pressure Gibbs ensemble Monte Carlo simulations of adsorption into narrow pores. Mol Phys 97(8):955–965

    Article  Google Scholar 

  • Medeiros M, Costas MAE (1997) Gibbs ensemble Monte Carlo simulation of the properties of water with a fluctuating charges model. J Chem Phys 107(6):2012–2019

    Article  Google Scholar 

  • Mehlig B, Heermann DW, Forrest BM (1992) Hybrid Monte Carlo method for condensed-matter systems. Phys Rev B 45(2):679–685

    Article  Google Scholar 

  • Mehta M, Kofke DA (1993) Implementation of the Gibbs ensemble using a thermodynamic model for one of the coexisting phases. Mol Phys 79(1):39–52

    Article  Google Scholar 

  • Mehta M, Kofke DA (1995) Molecular simulation in a pseudo grand canonical ensemble. Mol Phys 86(1):139–147

    Article  Google Scholar 

  • Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21(6):1087–1092

    Article  Google Scholar 

  • Mezei M (1980) A cavity-biased (T, V, μ) Monte Carlo method for the computer simulation of fluids. Mol Phys 40(4):901–906

    Article  Google Scholar 

  • Mezei M (1987) Grand-canonical ensemble Monte Carlo study of dense liquid. Mol Phys 61(3):565–582

    Article  Google Scholar 

  • Mezei M (1992) Theoretical calculation of the liquid–vapor coexistence curve of water, chloroform and methanol with the cavity-biased Monte Carlo method in the Gibbs ensemble. Mol Simul 9(4):257–267

    Article  Google Scholar 

  • Mezei M (1993) The effect of the combined volume on the efficiency of Gibbs ensemble simulations. Mol Simul 11(6):395–397

    Article  Google Scholar 

  • Mick J, Hailat E, Russo V, Rushaidat K, Schwiebert L, Potoff J (2013) GPU-accelerated Gibbs ensemble Monte Carlo simulations of Lennard-Jonesium. Comput Phys Commun 184(12):2662–2669

    Article  Google Scholar 

  • Miller RC, Kidnay AJ, Hiza MJ (1977) Liquid + vapor equilibria in methane + ethene and in methane + ethane from 150.00 to 190.00 K. J Chem Thermodyn 9(2):167–178

    Article  Google Scholar 

  • Minkara MS, Lindsey RK, Hembree RH, Venteicher CL, Jamadagni SN, Eike DM, Ghobadi AF, Koenig PH, Siepmann JI (2018) Probing additive loading in the lamellar phase of a nonionic surfactant: Gibbs ensemble Monte Carlo simulations using the SDK force field. Langmuir 34(28):8245–8254

    Article  Google Scholar 

  • Miyata* T, Endo A, Yamamoto T, Ohmori T, Akiya T, Nakaiwa M (2004) Gibbs ensemble Monte Carlo simulation of LJ fluid in cylindrical pore with energetically heterogeneous surface. Mol Simul 30(6):353–359

  • Mooij GCAM, Frenkel D, Smit B (1992) Direct simulation of phase equilibria of chain molecules. J Phys Condens Matter 4(16):L255–L259

    Article  Google Scholar 

  • Morales MA, Pierleoni C, Schwegler E, Ceperley DM (2010) Evidence for a first-order liquid-liquid transition in high-pressure hydrogen from ab initio simulations. Proc Natl Acad Sci 107(29):12799–12803

    Article  Google Scholar 

  • Morales MA, Hamel S, Caspersen K, Schwegler E (2013) Hydrogen-helium demixing from first principles: from diamond anvil cells to planetary interiors. Phys Rev B 87(17):174105

    Article  Google Scholar 

  • Nagarajan N, Robinson RL Jr (1986) Equilibrium phase compositions, phase densities, and interfacial tensions for carbon dioxide + hydrocarbon systems. 2. Carbon dioxide + n-decane. J Chem Eng Data 31(2):168–171

    Article  Google Scholar 

  • Neyt J-C, Wender A, Lachet V, Malfreyt P (2012) Modeling the pressure dependence of acid gas + n-Alkane interfacial tensions using atomistic Monte Carlo simulations. J Phys Chem C 116(19):10563–10572

    Article  Google Scholar 

  • Ortiz V, Maury-Evertsz JR, López GE (2003) Parallel tempering-cavity-bias algorithm in the Gibbs ensemble. Chem Phys Lett 368(3):452–457

    Article  Google Scholar 

  • Ortiz V, López-Álvarez YM, López GE (2005) Phase diagrams and capillarity condensation of methane confined in single- and multi-layer nanotubes. Mol Phys 103(19):2587–2592

  • Owicki JC, Scheraga HA (1978) Monte Carlo free energy calculations on dilute solutions in the isothermal-isobaric ensemble. J Phys Chem 82(11):1257–1264

    Article  Google Scholar 

  • Oyarzún B, van Westen T, Vlugt TJH (2015) Isotropic-nematic phase equilibria of hard-sphere chain fluids—pure components and binary mixtures. J Chem Phys 142(6):064903

    Article  Google Scholar 

  • Oyarzún Rivera B, van Westen T, Vlugt TJH (2016) Liquid-crystal phase equilibria of Lennard–Jones chains. Mol Phys 114(6):895–908

    Article  Google Scholar 

  • Panagiotopoulos AZ (1987a) Adsorption and capillary condensation of fluids in cylindrical pores by Monte Carlo simulation in the Gibbs ensemble. Mol Phys 62(3):701–719

    Article  Google Scholar 

  • Panagiotopoulos AZ (1987b) Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble. Mol Phys 61(4):813–826

    Article  Google Scholar 

  • Panagiotopoulos AZ (1989) Exact calculations of fluid-phase equilibria by Monte Carlo simulation in a new statistical ensemble. Int J Thermophys 10(2):447–457

    Article  Google Scholar 

  • Panagiotopoulos AZ (1992) Molecular simulation of phase equilibria: simple, ionic and polymeric fluids. Fluid Phase Equilib 76:97–112

    Article  Google Scholar 

  • Panagiotopoulos AZ, Quirke N, Stapleton M, Tildesley DJ (1988) Phase equilibria by simulation in the Gibbs ensemble. Mol Phys 63(4):527–545

    Article  Google Scholar 

  • Pathak M, Cho H, Deo M (2017) Experimental and molecular modeling study of bubble points of hydrocarbon mixtures in nanoporous media. Energy Fuels 31(4):3427–3435

    Article  Google Scholar 

  • Peng X, Zhao J, Cao D (2007) Adsorption of carbon dioxide of 1-site and 3-site models in pillared clays: a Gibbs ensemble Monte Carlo simulation. J Colloid Interface Sci 310:391–401

    Article  Google Scholar 

  • Pérez-Pellitero J, Bourasseau E, Demachy I, Ridard J, Ungerer P, Mackie AD (2008) Anisotropic united-atoms (AUA) potential for alcohols. J Phys Chem B 112(32):9853–9863

    Article  Google Scholar 

  • Pertsin A, Grunze M (2004) Computer simulation of water in asymmetric slit-like nanopores. J Phys Chem B 108(42):16533–16539

    Article  Google Scholar 

  • Phuong VT, Chokbunpiam T, Fritzsche S, Remsungnen T, Rungrotmongkol T, Chmelik C, Caro J, Hannongbua S (2016) Methane in zeolitic imidazolate framework ZIF-90: adsorption and diffusion by molecular dynamics and Gibbs ensemble Monte Carlo. Microporous Mesoporous Mater 235:69–77

    Article  Google Scholar 

  • Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19

    Article  Google Scholar 

  • Plimpton S, Heffelfinger G (1992) Scalable parallel molecular dynamics on MIMD supercomputers. In: Proceedings scalable high performance computing conference SHPCC-92.

  • Poling BE, Prausnitz JM, O’Connell JP (2001) Properties of gases and liquids. McGraw-Hill Education, New York

    Google Scholar 

  • Poursaeidesfahani A, Torres-Knoop A, Dubbeldam D, Vlugt TJH (2016) Direct free energy calculation in the continuous fractional component Gibbs ensemble. J Chem Theory Comput 12(4):1481–1490

    Article  Google Scholar 

  • Powles JG (1980) The liquid-vapour coexistence line by computer simulation à la Widom. Mol Phys 41(4):715–727

    Article  Google Scholar 

  • Preising M, Redmer R (2019) High-pressure melting line of helium from ab initio calculations. Phys Rev B 100:184107

    Article  Google Scholar 

  • Rahbari A, Hens R, Ramdin M, Moultos OA, Dubbeldam D, Vlugt TJH (2021) Recent advances in the continuous fractional component Monte Carlo methodology. Mol Simul 47(10–11):804–823

    Article  Google Scholar 

  • Roedder E (2018) Reviews in mineralogy. In: Fluid inclusions. De Gruyter: II-II

  • Romano S, Singer K (1979) Calculation of the entropy of liquid chlorine and bromine by computer simulation. Mol Phys 37(6):1765–1772

    Article  Google Scholar 

  • Rosenbluth MN, Rosenbluth AW (1955) Monte Carlo calculation of the average extension of molecular chains. J Chem Phys 23(2):356–359

    Article  Google Scholar 

  • Rudisill EN, Cummings PT (1989) Gibbs ensemble simulation of phase equilibrium in the hard core two-Yukawa fluid model for the Lennard-Jones fluid. Mol Phys 68(3):629–635

    Article  Google Scholar 

  • Sastre F, Moreno-Hilario E, Sotelo-Serna MG, Gil-Villegas A (2018) Microcanonical-ensemble computer simulation of the high-temperature expansion coefficients of the Helmholtz free energy of a square-well fluid. Mol Phys 116(3):351–360

    Article  Google Scholar 

  • Scheibe L, Nettelmann N, Redmer R (2019) Thermal evolution of Uranus and Neptune. Astron Astrophys 632:A70

    Article  Google Scholar 

  • Schöttler M, Redmer R (2018) Ab initio calculation of the miscibility diagram for hydrogen-helium mixtures. Phys Rev Lett 120(11):115703

    Article  Google Scholar 

  • Schouten JA, de Kuijper A, Michels JPJ (1991) Critical line of He–H2 up to 2500 K and the influence of attraction on fluid-fluid separation. Phys Rev B 44(13):6630–6634

    Article  Google Scholar 

  • Shah MS, Tsapatsis M, Siepmann JI (2015) Development of the transferable potentials for phase equilibria model for hydrogen sulfide. J Phys Chem B 119(23):7041–7052

    Article  Google Scholar 

  • Shi W, Maginn EJ (2007) Continuous fractional component Monte Carlo: an adaptive biasing method for open system atomistic simulations. J Chem Theory Comput 3(4):1451–1463

    Article  Google Scholar 

  • Shi W, Maginn EJ (2008) Improvement in molecule exchange efficiency in Gibbs ensemble Monte Carlo: development and implementation of the continuous fractional component move. J Comput Chem 29(15):2520–2530

    Article  Google Scholar 

  • Siepmann JI, Frenkel D (1992) Configurational bias Monte Carlo: a new sampling scheme for flexible chains. Mol Phys 75(1):59–70

    Article  Google Scholar 

  • Smit B, De Smedt P, Frenkel D (1989) Computer simulations in the Gibbs ensemble. Mol Phys 68(4):931–950

    Article  Google Scholar 

  • Smit B, Karaborni S, Siepmann JI (1995) Computer simulations of vapor–liquid phase equilibria of n-alkanes. J Chem Phys 102(5):2126–2140

    Article  Google Scholar 

  • Smith W (1991) Molecular dynamics on hypercube parallel computers. Comput Phys Commun 62(2):229–248

    Article  Google Scholar 

  • Smith WR, Triska B (1994) The reaction ensemble method for the computer simulation of chemical and phase equilibria. I. Theory and basic examples. J Chem Phys 100(4):3019–3027

    Article  Google Scholar 

  • Soroush Barhaghi M, Potoff JJ (2019) Prediction of phase equilibria and Gibbs free energies of transfer using molecular exchange Monte Carlo in the Gibbs ensemble. Fluid Phase Equilib 486:106–118

    Article  Google Scholar 

  • Soroush Barhaghi M, Torabi K, Nejahi Y, Schwiebert L, Potoff JJ (2018) Molecular exchange Monte Carlo: a generalized method for identity exchanges in grand canonical Monte Carlo simulations. J Chem Phys 149(7):072318

    Article  Google Scholar 

  • Srinivasan SG, Ashok I, Jônsson H, Kalonji G, Zahorjan J (1997) Dynamic-domain-decomposition parallel molecular dynamics. Comput Phys Commun 102(1):44–58

    Article  Google Scholar 

  • Stapleton MR, Panagiotopoulos AZ (1990) Application of excluded volume map sampling to phase equilibrium calculations in the Gibbs ensemble. J Chem Phys 92(2):1285–1293

    Article  Google Scholar 

  • Sterpenich J, Caumon M-C, Lachet V, Creton B, El Jarmouni M, Randi A, Robert P (2022) NO solubility in water and brine up to 60 MPa and 373 K by combining Raman spectroscopy and molecular simulation. J Raman Spectrosc 53(3):645–653

    Article  Google Scholar 

  • Strnada M, Nezbeda I (1999) An extended Gibbs ensemble. Mol Simul 22(3):183–198

    Article  Google Scholar 

  • Sweatman MB (2009) New techniques for simulating crystals. Mol Simul 35(10–11):897–909

    Article  Google Scholar 

  • Sweatman MB, Quirke N (2001) Modelling gas adsorption in slit-pores using Monte Carlo simulation. Mol Simul 27(5–6):295–321

    Article  Google Scholar 

  • Torres-Knoop A, Balaji SP, Vlugt TJH, Dubbeldam D (2014) A comparison of advanced Monte Carlo methods for open systems: CFCMC vs CBMC. J Chem Theory Comput 10(3):942–952

    Article  Google Scholar 

  • Torres-Knoop A, Burtch NC, Poursaeidesfahani A, Balaji SP, Kools R, Smit FX, Walton KS, Vlugt TJH, Dubbeldam D (2016) Optimization of particle transfers in the Gibbs ensemble for systems with strong and directional interactions using CBMC, CFCMC, and CB/CFCMC. J Phys Chem C 120(17):9148–9159

    Article  Google Scholar 

  • Torres-Knoop A, Poursaeidesfahani A, Vlugt TJH, Dubbeldam D (2017) Behavior of the enthalpy of adsorption in nanoporous materials close to saturation conditions. J Chem Theory Comput 13(7):3326–3339

    Article  Google Scholar 

  • Tsangaris DM, McMahon PD (1991) A modified Gibbs ensemble method for calculating fluid phase equilibria. Mol Simul 7(1–2):97–103

    Article  Google Scholar 

  • Tsangaris DM, McMahon PD (1992) Gibbs ensemble calculations with an equation of state: an application to vapor–liquid equilibria. Mol Simul 9(3):223–238

    Article  Google Scholar 

  • Ung S, Doherty MF (1995) Vapor-liquid phase equilibrium in systems with multiple chemical reactions. Chem Eng Sci 50(1):23–48

    Article  Google Scholar 

  • Ungerer P, Boutin A, Fuchs AH (2001) Direct calculation of bubble points for alkane mixtures by molecular simulation. Mol Phys 99(17):1423–1434

    Article  Google Scholar 

  • Ungerer P, Wender A, Demoulin G, Bourasseau É, Mougin P (2004) Application of Gibbs ensemble and NPT Monte Carlo simulation to the development of improved processes for H2S-rich gases. Mol Simul 30(10):631–648

    Article  Google Scholar 

  • Ungerer P, Yiannourakou M, Mavromaras A, Collell J (2019) Compositional modeling of crude oils using C10–C36 properties generated by molecular simulation. Energy Fuels 33(4):2967–2980

    Article  Google Scholar 

  • Urukova I, Vorholz J, Maurer G (2005) Solubility of CO2, CO, and H2 in the ionic liquid [bmim][PF6] from Monte Carlo simulations. J Phys Chem B 109(24):12154–12159

    Article  Google Scholar 

  • Valleau JP (1993) Density-scaling Monte Carlo study of subcritical Lennard-Jonesium. J Chem Phys 99(6):4718–4728

    Article  Google Scholar 

  • Vlugt TJH, Dunweg B (2001) Computing phase equilibria by parallel excluded volume tempering. J Chem Phys 115(19):8731–8741

    Article  Google Scholar 

  • von Zahn U, Hunten DM, Lehmacher G (1998) Helium in Jupiter’s atmosphere: results from the Galileo probe helium interferometer experiment. J Geophys Res Planets 103(E10):22815–22829

    Article  Google Scholar 

  • Vorholz J, Harismiadis VI, Rumpf B, Panagiotopoulos AZ, Maurer G (2000) Vapor + liquid equilibrium of water, carbon dioxide, and the binary system, water + carbon dioxide, from molecular simulation. Fluid Phase Equilib 170(2):203–234

    Article  Google Scholar 

  • Wagner S, Kahl G (2019) Structure and equation-of-state of a disordered system of shape anisotropic patchy particles. Mol Phys 117(20):2873–2880

    Article  Google Scholar 

  • Wei MSW, Brown TS, Kidnay AJ, Sloan ED (1995) Vapor + liquid equilibria for the ternary system methane + ethane + carbon dioxide at 230 K and its constituent binaries at temperatures from 207 to 270 K. J Chem Eng Data 40(4):726–731

    Article  Google Scholar 

  • Wilding NB, Müller M (1994) Accurate measurements of the chemical potential of polymeric systems by Monte Carlo simulation. J Chem Phys 101(5):4324–4330

    Article  Google Scholar 

  • Wood WW (1968) Monte Carlo calculations for hard disks in the isothermal-isobaric ensemble. J Chem Phys 48(1):415–434

    Article  Google Scholar 

  • Yazaydin AO (2022) 1-Bromopropane capture with hydrophobic zeolites: force field development and molecular simulations. J Phys Chem C 126(12):5728–5734

    Article  Google Scholar 

  • Zara SJ, Nicholson DA (1990) Grand canonical ensemble Monte Carlo simulation on a transputer array. Mol Simul 5:245–261

    Article  Google Scholar 

  • Zeng YP, Li K, Zhu QY, Wang JL, Cao YN, Lu SJ (2018) Capture of CO2 in carbon nanotube bundles supported with room-temperature ionic liquids: a molecular simulation study. Chem Eng Sci 192:94–102

    Article  Google Scholar 

  • Zhang Z, Duan Z (2002) Phase equilibria of the system methane–ethane from temperature scaling Gibbs Ensemble Monte Carlo simulation. Geochim Cosmochim Acta 66:3431–3439

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Chinese NSF projects (42130114) and the strategic priority research program (B) of CAS (XD841000000), pre research Project on Civil Aerospace Technologies No. D020202 funded by Chinese National Space Administration (CNSA).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuhong Yang or Kun Yin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Yang, Y., Yin, K. et al. A review of GEMC method and its improved algorithms. Acta Geochim 42, 409–434 (2023). https://doi.org/10.1007/s11631-023-00603-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-023-00603-z

Keywords

Navigation