Skip to main content
Log in

The breakdown of diopside to (Ca, Mg)SiO3 perovskite–(Mg, Ca, Fe)SiO3 glass–(Mg, Ca)SiO3 glass–(Mg, Ca)SiO3 majorite in a melt vein the Suizhou L6 chondrite

  • Original Article
  • Published:
Acta Geochimica Aims and scope Submit manuscript

Abstract

The Suizhou meteorite is a heavily shocked and melted vein-containing L6 chondrite. It contains a minor amount of diopside with a (Ca0.419Mg0.466Fe0.088)SiO3 composition, and a shock-metamorphosed diopside grain associated with ringwoodite and lingunite was found in a melt vein of this meteorite. Our electron microprobe, transmission electron microscopic and Raman spectroscopic analyses revealed four silicate phases with different compositions and structures inside this shock-metamorphosed diopside grain, termed phase A, B, C and D in this paper. Phase A is identified as orthorhombic (Ca0.663Mg0.314)SiO3-perovskite which is closely associated with phase B, the vitrified (Mg0.642Ca0.290Fe0.098)SiO3 perovskite. Phase D is assigned to be (Mg0.578Ca0.414)SiO3 majorite which is associated with phase C, the vetrified Ca-rich Mg-perovskite with a (Mg0.853Ca0.167)SiO3 composition. Based on high-pressure and high-temperature experiments, the diopside grain in the melt vein of the Suizhou meteorite would have experienced a P–T regime of 20–24 GPa and 1800 – > 2000 °C. Such P–T conditions are high enough for the decomposition of the diopside and the formation of four different silicate phases. The orthorhombic (Ca0.663Mg0.314)SiO3 perovskite found in the Suizhou L6 chondrite might be considered as the third lower-mantle silicate mineral after bridgmanite and davemaoite after the detailed analyses of its crystal structure and physical properties being completed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Agee CB, Li J, Shannon MC, Circone S (1995) Pressure temperature phase diagram for the Allende meteorite. J Geophys Res 100:17725–17740

    Article  Google Scholar 

  • Bindi L, Chen M, Xie XD (2017) Discovery of the Fe-analogue of akimotoite in the shocked Suizhou L6 chondrite. Sci Rep 7:42674

    Article  Google Scholar 

  • Bindi L, Brenker FE, Nestola F, Koch TE, Prior DJ, Lilly K, Krot AN, Bizzarro M, Xie XD (2019) Discovery of asimowite, the Fe-analog of wadsleyite, in shock-melted silicate droplets of the Suizhou L6 and the Quebrada Chimborazo 001 CB3.0 chondrites. Am Miner 104:775–778

    Article  Google Scholar 

  • Bindi L, Shim SH, Sharp TG, Xie XD (2020) Evidence for the charge disproportionation of iron in extraterrestrial bridgmanite. Sci Adv 6:eaay7893

    Article  Google Scholar 

  • Bindi L, Sinmyo R, Bykova E, Ovsyannikov SV, McCammon C, Kupenko I, Ismailova L, Dubrovinsky L, Xie XD (2021) Discovery of elgoresyite, (Mg, Fe)5Si2O9: implications for novel iron-magnesium silicates in rocky planetary interiors. ACS Earth Space Chem 5:2024–2130

    Article  Google Scholar 

  • Brearley AJ, Jones RH (1998) Chondritic meteorites. In: Papike JJ (ed) Planetary materials. Mineralogical Society of America, Washington DC

    Google Scholar 

  • Chen M, Xie XD (2015) Shock-produced akimotoite in the Suizhou L6 chondrite. Sci China Earth Sci 58:876–880

    Article  Google Scholar 

  • Chen M, Sharp TG, El Goresy A, Wopenka B, Xie X (1996) The majorite-pyrope + magnesiowüstite assemblage: constraints on the history of shock veins in chondrites. Science 271(5255):1570–1573. https://doi.org/10.1126/science.271.5255.1570

    Article  Google Scholar 

  • Chen M, Shu JF, Xie XD, Mao HK (2003) Natural CaTi2O4-structured FeCr2O4 polymorph in the Suizhou meteorite and its significance in mantle mineralogy. Geochim Cosmochim Acta 67:3937–3942

    Article  Google Scholar 

  • Chen M, Xie XD, Goresy A (2004a) A shock-produced (Mg, Fe)SiO3 glass in the Suizhou meteorite. Meteorit Planet Sci 39:1797–1808

    Article  Google Scholar 

  • Chen M, El Goresy A, Frost D, Gillet P (2004b) Melting experiments of a chondritic meteorite between 16 and 25 GPa: Implication for Na/K fractionation in a primitive chondritic Earth’s mantle. Eur J Mineral 16:203–211

    Article  Google Scholar 

  • Chen M, Shu JF, Mao HK (2008) Xieite, a new mineral of high-pressure FeCr2O4 polymorph. Chin Sci Bull 53:3341–3345

    Google Scholar 

  • Coleman LC (1977) Ringwoodite and majorite in the Catherwood meteorite. Can Mineral 15:97–101

    Google Scholar 

  • Durben DJ, Wolf G (1992) High-temperature behavior of metastable MgSiO3 perovskite: a Raman spectroscopic study. Am Miner 77:890–893

    Google Scholar 

  • Gasparik T (1996) Melting experiments on the enstatite-diopside join at 70–224 kbar, including the melting of diopside. Contrib Mineral Petrol 124:139–153

    Article  Google Scholar 

  • Hemmati M, Chizmeshya A, Wolf GH, Poole PH, Shao J, Angell CA (1995) Cryst-Amorphous Trans Silicate Perovskites Phys Rev B 51:14841–14848

    Google Scholar 

  • Irifune T, Miyashita M, Inoue T, Ando J, Funakoshi K, Utsumi W (2000) High-pressure phase transformation in CaMgSi2O6 and implications for origin of ultra-deep diamond inclusions. Geophys Res Lett 27:3541–3544

    Article  Google Scholar 

  • Kim YH, Li CM, Manghnani MH (1994) High-pressure phase transformations in a natural crystalline diopside and a synthetic CaMgSi2O6 glass. Phys Earth Planet Inter 83:61–79

    Article  Google Scholar 

  • Kubicki JD, Hemley RJ, Hofmeister AM (1992) Raman and infrared study of pressure-induced structuralchanges in MgSiO3, CaMgSi2O6, and CaSiO3 glasses. Am Miner 77:258–269

    Google Scholar 

  • Liu LG (1974) Silicate perovskite from phase transformations of pyrope-garnet at high-pressure and temperature. Geophys Res Lett 1:277–280

    Article  Google Scholar 

  • Liu LG (1975) Post-oxide phases of forsterite and enstatite. Geophys Res Lett 2:417–419

    Article  Google Scholar 

  • Liu L (1987) New silicate perovskites. Geophys Res Lett 14:1079–1082

    Article  Google Scholar 

  • Ma C, Tschauner O, Beckett JR, Liu Y, Greenberg E, Prakapenka VB (2019) Chenmingite, FeCr2O4 in the CaFe2O4-type structure, a shock-induced, high-pressure mineral in the Tissint martian meteorite. Am Mineral 104:1522–1525

    Article  Google Scholar 

  • Malavergne V, Guyot F, Benzerara K, Martinez I (2001) Description of new shock-induced phases in the Shergotty, Zagami, Nakhla, and Chassigny meteorites. Meteorit Planet Sci 36:1297–1305

    Article  Google Scholar 

  • Mao HK, Yagi T, Bell PM (1977) Mineralogy of the earth deep mantle: quenching experiments on mineral composition at high pressure and temperature. Carnegie Institution of Washington, Washington, pp 502–504

    Google Scholar 

  • Martinez M, Brearley AJ, Trigo-Rodríguez JM, Llorca J (2019) New observations on high-pressure phases in a shock melt vein in the Villalbeto de la Peña meteorite: insights into the shock behavior of diopside. Meteorit Planet Sci 54:2845–2863

    Article  Google Scholar 

  • Oguri K, Funamori N, Skai F, Kondo T, Uchida T, Yagi T (1997) High-pressure and high-temperature phase relations in diopside CaMgSi2O6. Phys Earth Planet Inter 104:363–370

    Article  Google Scholar 

  • Presnall DC (2000) Phase diagrams of earth-forming minerals. In: Ahrens TJ (ed) Mineral physics and crystallography. American Geophysical Union, Washington DC, pp 248–268

    Google Scholar 

  • Tamai H, Yagi T (1989) High-pressure and high temperature phase relation in CaSiO3 and CaMgSi2O6 and elasticity of perovskite-type CaSiO3. Phys Earth Planet Inter 54:370–377

    Article  Google Scholar 

  • Tomioka H, Fujino K (1997) Natural (Mg, Fe)SiO3 ilmenite and perovskite in the Tenham meteorite. Science 277:1084–1086

    Article  Google Scholar 

  • Tomioka N, Kimura M (2003) The breakdown of diopside to Ca-rich majorite and glass in shocked H chondrite. Earth Planet Sci Lett 208:271–278

    Article  Google Scholar 

  • Tomioka N, Bindi L, Okuchi T, Miyahara M, Iitaka T, Li Z, Kawatsu T, Xie XD, Purevjav N, Tani R, Kodama Y (2021) Poirierite, a dense metastable polymorph magnesium iron silicate in shocked meteorites. Nat Commun Earth Environ 2:16

    Article  Google Scholar 

  • Tschauner O, Ma C, Beckett JR, Prescher C, Prakapenka VB, Rossman GR (2014) Discovery of bridgmanite, the most abundant mineral in Earth, in a shocked meteorite. Science 346:1100–1102

    Article  Google Scholar 

  • Tschauner O, Huang S, Yang S, Humayun M, Liu W, Gilbert Corder SN, Bechtel HA, Tischler J, Rossman JR (2021) Davemaoite – CaSiO3-perovskite as a mineral from the lower mantle. Nature 374:891–894

    Google Scholar 

  • Xie XD, Chen M (2016) Suizhou meteorite: mineralogy and shock metamorphism. Springer-Verlag Berlin Heidelberg and Guangdong Science and Technology Press, Guangzhou, p 258

    Book  Google Scholar 

  • Xie XD, Chen M (2020) Yanzhuang meteorite: mineralogy and shock metamorphism. Springer-Verlag GmbH Berlin Heidelberg and Guangdong Science and Technology Press, Guangzhou, p 276

    Book  Google Scholar 

  • Xie ZD, Sharp TG (2007) Host rock solid-state transformation in a shock-induced melt vein of Tenham L6 chondrite. Earth Planet Sci Lett 254:433–445

    Article  Google Scholar 

  • Xie XD, Chen M, Wang DQ (2001a) Shock-related mineralogical features and P–T history of the Suizhou L6 chondrite. Eur J Mineral 13:1177–1190

    Article  Google Scholar 

  • Xie XD, Chen M, Wang DQ, El Goresy A (2001b) NaAlSi3O8-hollandite and other high-pressure minerals in the shock melt veins of the Suizhou L6 chondrite. Chin Sci Bull 46:1121–1126

    Google Scholar 

  • Xie XD, Minitti ME, Chen M, Wang DQ, Mao HK, Shu JF, Fei YW (2002) Natural high-pressure polymorph of merrillite in the shock vein of the Suizhou meteorite. Geochim Cosmochim Acta 66:2439–3244

    Article  Google Scholar 

  • Xie XD, Minitti ME, Chen M, Wang DQ, Mao HK, Shu JF, Fei YW (2003) Tuite, γ-Ca3(PO4)2, a new phosphate mineral from the Suizhou L6 chondrite. Eur J Mineral 15:1001–1005

    Article  Google Scholar 

  • Xie XD, Sun ZY, Chen M (2011) The distinct morphological and petrological features of shock melt veins in the Suizhou L6 chondrite. Meteorit Planet Sci 46:459–469

    Article  Google Scholar 

  • Xie XD, Gu XP, Yang HX, Chen M (2019) Wangdaodeite, the LiNbO3-structured high-pressure polymorph of ilmenite, a new mineral from the Suizhou L6 chondrite. Meteorit Planet Sci 55:184–192

    Article  Google Scholar 

  • Xie XD, Gu XP, Chen M (2022) The discovery of TiO2-II, the α-PbO2- structured high-pressure polymorph of rutile in the Suizhou L6 chondrite. Acta Geochim. https://doi.org/10.1007/s11631-022-00585-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiande Xie.

Ethics declarations

Conflict of interest

We declare no conflict of interest in this study. The manuscript has not been submitted to more than one journal for simultaneous consideration.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, X., Gu, X. The breakdown of diopside to (Ca, Mg)SiO3 perovskite–(Mg, Ca, Fe)SiO3 glass–(Mg, Ca)SiO3 glass–(Mg, Ca)SiO3 majorite in a melt vein the Suizhou L6 chondrite. Acta Geochim 42, 183–194 (2023). https://doi.org/10.1007/s11631-023-00594-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-023-00594-x

Keywords

Navigation