Skip to main content
Log in

Gardaneh Salavat porphyry copper system: Is it about metal endowment or fertility of the porphyritic intrusion?

  • Original Article
  • Published:
Acta Geochimica Aims and scope Submit manuscript

A Correction to this article was published on 27 July 2022

This article has been updated

Abstract

Gardaneh Salavat porphyry copper system is located in the northwest of Iran. It comprises a quartz diorite to diorite porphyritic intrusion that created extensive alteration haloes in the host rocks. Despite all technical considerations, the exploration activities did not yield to ore discovery. As the matter of fact, all of the geological, geophysical, and geochemical characteristics of a porphyry Cu-Au deposit exist but there is no economic mineralization. Detailed examinations suggest that the only reasonable explanation can be related to the infertility or low metal endowment of the porphyritic intrusion. The reasons include (1) anomalous ranges of Cu, Au, and Mo rather than economic ore grades, (2) weakly development of potassic alteration, (3) probably sulfur saturation of magma that occurred before intrusion emplacement in the host rocks, and (4) probably low metal endowment in the regional scale and the lack of known porphyry copper deposits in close neighborhoods. It is tried to test the proposed hypothesis with the introduced fertility indicators based on major and trace element geochemistry. However, current fertility indicators could not prove or reject the proposed hypothesis for Gardaneh Salavat porphyritic intrusion because of the high-K calc-alkaline to shoshonitic nature of the intrusive rocks together with the unavailability of relatively fresh/unaltered samples. This case study is notable to examine because (1) it shows that characterization of fertile from barren intrusions seems to be as important as vectoring towards concealed porphyry copper deposits, especially while dealing with deep exploration targets that are associated with high financial risks, and (2) it highlights the inefficiencies and uncertainties in introduced magma fertility indicators for porphyry copper intrusions. As a result, it is of high importance to conduct an overarching investigation on other possible fertility indicators as a fundamental need for the future of the exploration industry. 

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Change history

References

  • Ahmed A, Crawford AJ, Leslie C, Phillips J, Wells T, Garay A, Hood S, Cooke DR (2020) Assessing copper fertility of intrusive rocks using field portable X-ray fluorescence (pXRF) data. Geochem Explor Environ Anal 20(1):81–97

    Article  Google Scholar 

  • Airo ML (ed) (2015) Geophysical signatures of mineral deposit types in Finland. Geological Survey of Finland, Espoo

    Google Scholar 

  • Anderson E, Hitzman M, Bedrosian P, Shah A, Kelley K (2013) Geological analysis of aeromagnetic data from southwestern alaska: implications for exploration in the area of the pebble porphyry Cu-Au-Mo deposit. Econ Geol 108(3):421–436

    Article  Google Scholar 

  • Atalou S, Nazafati N, Lotfi M, Aghazadeh M (2017) Fluid inclusion investigations of the Masjed Daghi copper-gold porphyry-epithermal mineralization, East Azerbaijan Province, NW Iran. Open J Geol 7(8):1110–1127

    Article  Google Scholar 

  • Berger BR, Ayuso RA, Wynn JC, Seal RR (2008) Preliminary model of porphyry copper deposits. US Geol Surv Open-File Rep 1321:55

    Google Scholar 

  • Carranza EJM, Hale M (2002) Where are porphyry copper deposits spatially localized? A case study in Benguet province, Philippines. Nat Resources Res 11(1):45–59

    Article  Google Scholar 

  • Chiaradia M (2020) Gold endowments of porphyry deposits controlled by precipitation efficiency. Nat Commun 11(1):1–10

    Article  Google Scholar 

  • Clark DA (2014) Magnetic effects of hydrothermal alteration in porphyry copper and iron-oxide copper–gold systems: a review. Tectonophysics 624:46–65

    Article  Google Scholar 

  • Cooke DR, Agnew P, Hollings P, Baker M, Chang Z, Wilkinson J, Wilkinson CC (2017) Porphyry indicator minerals (PIMS) and porphyry vectoring and fertility tools (PVFTS)–indicators of mineralization styles and recorders of hypogene geochemical dispersion halos. Decennial Mineral Exploration Conferences

  • Corral I, Sahlström F, Behnsen H, Chang Z (2021) Geochemical tools for porphyry systems exploration: Magma fertility, and porphyry indicator minerals (PIMs) of the northern Bowen Basin, Queensland (Australia). X Congreso Geologico de España

  • Crespo J, Reich M, Barra F, Verdugo JJ, Martínez C (2018) Critical metal particles in copper sulfides from the supergiant Río Blanco porphyry Cu–Mo deposit, Chile. Minerals 8(11):519

    Article  Google Scholar 

  • Dahlin T, Zhou B (2004) A numerical comparison of 2D resistivity imaging with 10 electrode arrays. Geophys Prospect 52(5):379–398

    Article  Google Scholar 

  • Davies RC, Williams PJ (2005) The El Galeno and Michiquillay porphyry Cu-Au-Mo deposits: geological descriptions and comparison of Miocene porphyry systems in the Cajamarca district, northern Peru. Miner Deposita 40(5):598–616

    Article  Google Scholar 

  • Dentith M, Mudge S (2014) Geophysics for the mineral exploration geoscientist. Cambridge University Press

    Book  Google Scholar 

  • Dilles JH, Einaudi MT (1992) Wall-rock alteration and hydrothermal flow paths about the Ann-Mason porphyry copper deposit, Nevada; a 6-km vertical reconstruction. Econ Geol 87(8):1963–2001

    Article  Google Scholar 

  • Du J, Audétat A (2020) Early sulfide saturation is not detrimental to porphyry Cu-Au formation. Geology 48(5):519–524

    Article  Google Scholar 

  • Edwards R, Atkinson K (1986) Magmatic hydrothermal deposits. In: Ore deposit geology and its influence on mineral exploration. Springer, Dordrecht, pp 69–142

  • Ghandchi M, Afsharian A, Chaichi Z (1991) 100000 scale geological map of lahroud sheet. Geological Survey of Iran (GSI)

  • Grancea L, Cuney M, Leroy JL (2001) Mineralised versus barren intrusions: a melt inclusion study in Romania’s Gold Quadrilateral. Earth Planet Sci 333:705–710

    Google Scholar 

  • Guimarães SB, Klein EL, Correa RT (2019) Reassessment of the geology of the southeastern Tapajós Gold Province, Amazonian Craton, Brazil, based on field, petrographic, and airborne geophysical data. J Geol Surv Brazil 2(1):1–16

    Article  Google Scholar 

  • Halley S, Dilles J, Tosdal R (2015) Footprints: the hydrothermal alteration and geochemical dispersion around porphyry copper deposits

  • Hastie AR, Kerr AC, Pearce JA, Mitchell SF (2007) Classification of altered volcanic island arc rocks using immobile trace elements: development of the Th–Co discrimination diagram. J Petrol 48(12):2341–2357

    Article  Google Scholar 

  • Honarmand M (2016) Application of airborne geophysical and ASTER data for hydrothermal alteration mapping in the Sar-Kuh Porphyry Copper Area, Kerman Province, Iran. Open J Geol 06:1257–1268

    Article  Google Scholar 

  • Hoschke T (2012) Geophysics of the Elang Cu-Au porphyry deposit, Indonesia, and comparison with other Cu-Au porphyry systems. ASEG Extended Abstracts 2012(1):1–3

    Article  Google Scholar 

  • Imamalipour A, Mousavi R (2018) Vertical geochemical zonation in the Masjed Daghi porphyry copper-gold deposit, northwestern Iran: implications for exploration of blind mineral deposits. Geochem Explor Environ Anal 18(2):120–131

    Article  Google Scholar 

  • Jamali H, Dilek Y, Daliran F, Yaghubpur A, Mehrabi B (2010) Metallogeny and tectonic evolution of the Cenozoic Ahar-Arasbaran volcanic belt, northern Iran. Int Geol Rev 52(4–6):608–630

    Article  Google Scholar 

  • James A (1971) Hypothetical diagrams of several porphyry copper deposits. Econ Geol 66(1):43–47

    Article  Google Scholar 

  • Janoušek V, Farrow CM, Erban V (2006) Interpretation of whole-rock geochemical data in igneous geochemistry: introducing Geochemical Data Toolkit (GCDkit). J Petrol 47(6):1255–1259

    Article  Google Scholar 

  • John DA, Ayuso RA, Barton MD, Blakely RJ, Bodnar RJ, Dilles JH, Gray F, Graybeal FT, Mars JC, Mcphee DK, Seal RR, Taylor RD, Vikre PG (2010) Porphyry copper deposit model. Scientific investigations report

  • Kamali AA, Moayyed M, Amel N, Mohammad F, Brenna M, Saumur BM, Santos JF (2020) Mineralogy, mineral chemistry and thermobarometry of post-mineralization dykes of the Sungun Cu–Mo porphyry deposit (Northwest Iran). Open Geosci 12(1):764–790

    Article  Google Scholar 

  • Kazemi Mehrnia A, Zarinfar R, Mohebbi O, Mashhadi SR, Nikfarjam M, Mohammadiani Sayad H (2019) Gardaneh Salavat Exploration Report. Parsi Kan Kav Company, Tehran

    Google Scholar 

  • Lee RG, Plouffe A, Ferbey T, Hart CJ, Hollings P, Gleeson SA (2021) Recognizing porphyry copper potential from till zircon composition: a case study from the Highland Valley Porphyry district, south-central British Columbia. Econ Geol 116(4):1035–1045

    Article  Google Scholar 

  • Loke MH (2020) Tutorial: 2-D and 3-D electrical imaging surveys. Geotomo Software, Malaysia. http://www.geoelectrical.com.

  • Loke MH, Chambers JE, Rucker DF, Kuras O, Wilkinson PB (2013) Recent developments in the direct-current geoelectrical imaging method. J Appl Geophys 95:135–156

    Article  Google Scholar 

  • Loucks RR (2014) Distinctive composition of copper-ore-forming arcmagmas. Aust J Earth Sci 61(1):5–16

    Article  Google Scholar 

  • Lu YJ, Hou ZQ, Yang ZM, Parra-Avila LA, Fiorentini ML, McCuaig TC, Loucks RR (2017) Terrane-scale porphyry Cu fertility in the Lhasa terrane, southern Tibet. Geol Surv West Aust Record 6:95–100

    Google Scholar 

  • Maghsoudi A, Yazdi M, Mehrpartou M, Vosoughi M, Younesi S (2014) Porphyry Cu-Au mineralization in the Mirkuh Ali Mirza magmatic complex, NW Iran. J Asian Earth Sci 79:932–941

    Article  Google Scholar 

  • Mao D, Revil A, Hinton J (2016) Induced polarization response of porous media with metallic particles—Part 4: detection of metallic and nonmetallic targets in time-domain induced polarization tomography. Geophysics 81(4):D359–D375

    Article  Google Scholar 

  • Maryono A, Harrison RL, Cooke DR, Rompo I, Hoschke TG (2018) Tectonics and geology of porphyry Cu-Au deposits along the eastern Sunda magmatic arc, Indonesia. Econ Geol 113(1):7–38

    Article  Google Scholar 

  • Mashhadi SR (2022) Detecting resistivity and induced polarization anomalies of galena veins in the presence of highly chargeable and conductive geological units at Daryan barite deposit in Iran. J Asian Earth Sci X:100086

  • Mashhadi SR, Ramazi H (2018) The application of resistivity and induced polarization methods in identification of skarn alteration haloes: A case study in the Qale-Alimoradkhan Area. J Environ Eng Geophys 23(3):363–368

    Article  Google Scholar 

  • Mashhadi SR, Safari M (2020) The effectiveness of pseudo-gravity transformation in mineral exploration: an example from a placer magnetite deposit. In: EAGE—NSG2020 3rd conference on geophysics for mineral exploration and mining, vol 2020(1), pp 1–4

  • Mashhadi SR, Mostafaei K, Ramazi H (2018) Improving bitumen detection in resistivity surveys by using induced polarisation data. Explor Geophys 49(5):762–774

    Article  Google Scholar 

  • Mattsson H, Thunehed H, Triumf C (2003) Compilation of petrophysical data from rock samples and in situ gamma-ray spectrometry measurements. Oskarshamn site investigation - P-03–97. https://skb.se/upload/publications/pdf/P-03-97webb.pdf

  • Middlemost EA (1994) Naming materials in the magma/igneous rock system. Earth Sci Rev 37(3–4):215–224

    Article  Google Scholar 

  • Mitchinson DE, Enkin RJ, Hart CJR (2013) Linking porphyry deposit geology to geophysics via physical properties: adding value to geoscience BC geophysical data, geoscience BC report 2013‐14. http://www.geosciencebc.com/i/project_data/ GBC_Report2013-14/GBC_Report2013-14.pdf

  • Mostafaei K, Ramazi H (2019) Investigating the applicability of induced polarization method in ore modelling and drilling optimization: a case study from Abassabad, Iran. Near Surf Geophys 17(6-Recent Developments in Induced Polarization):637–652

  • Park JW, Campbell IH, Malaviarachchi SP, Cocker H, Hao H, Kay SM (2019) Chalcophile element fertility and the formation of porphyry Cu±Au deposits. Miner Deposita 54(5):657–670

    Article  Google Scholar 

  • Park JW, Campbell IH, Chiaradia M, Hao H, Lee CT (2021) Crustal magmatic controls on the formation of porphyry copper deposits. Nat Rev Earth Environ 1–16

  • Parsa M, Maghsoudi A, Yousefi M, Sadeghi M (2016) Recognition of significant multi-element geochemical signatures of porphyry Cu deposits in Noghdouz area, NW Iran. J Geochem Explor 165:111–124

    Article  Google Scholar 

  • Parsa M, Maghsoudi A, Yousefi M (2018) Spatial analyses of exploration evidence data to model skarn-type copper prospectivity in the Varzaghan district, NW Iran. Ore Geol Rev 92:97–112

    Article  Google Scholar 

  • Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib Miner Petrol 58(1):63–81

    Article  Google Scholar 

  • Pizarro H, Campos E, Bouzari F, Rousse S, Bissig T, Grégoire M, Riquelme R (2020). Porphyry Indicator Zircons (PIZs): application to exploration of Porphyry Copper Deposits. Ore Geol Rev 126

  • Pohl WL (2011) Economic geology: principles and practice. Wiley, New York

    Book  Google Scholar 

  • Revil A, Abdel Aal GZ, Atekwana EA, Mao D, Florsch N (2015a) Induced polarization response of porous media with metallic particles—Part 2: comparison with a broad database of experimental data. Geophysics 80(5):D539–D552

    Article  Google Scholar 

  • Revil A, Florsch N, Mao D (2015b) Induced polarization response of porous media with metallic particles—Part 1: a theory for disseminated semiconductors. Geophysics 80(5):D525–D538

    Article  Google Scholar 

  • Richards J, Spell T, Rameh E, Razique A, Fletcher T (2012) High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu ± Mo ± Au potential: examples from the Tethyan Arcs of Central and Eastern Iran and Western Pakistan. Econ Geol 107:295–332

    Article  Google Scholar 

  • Safari M, Maghsoudi A, Pour AB (2018) Application of Landsat-8 and ASTER satellite remote sensing data for porphyry copper exploration: a case study from Shahr-e-Babak, Kerman, south of Iran. Geocarto Int 33(11):1186–1201

    Article  Google Scholar 

  • Seedorff E, Barton MD, Stavast WJ, Maher DJ (2008) Root zones of porphyry systems: extending the porphyry model to depth. Econ Geol 103(5):939–956

    Article  Google Scholar 

  • Shokri BJ, Ardejani FD, Moradzadeh A (2016) Mapping the flow pathways and contaminants transportation around a coal washing plant using the VLF-EM, Geo-electrical and IP techniques - A case study, NE Iran. Environmental Earth Sciences 75(1):62

    Article  Google Scholar 

  • Shu Q, Chang Z, Lai Y, Hu X, Wu H, Zhang Y, Wang P, Zhai D, Zhang C (2019) Zircon trace elements and magma fertility: insights from porphyry (-skarn) Mo deposits in NE China. Miner Deposita 54(5):645–656

    Article  Google Scholar 

  • Sinclair WD, Goodfellow WD (2007) Porphyry deposits. Mineral deposits of Canada: A synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods: Geological Association of Canada, Mineral Deposits Division, Special Publication, 5, 223–243

  • Singer DA, Berger VI, Menzie WD, Berger BR (2005) Porphyry copper deposit density. Econ Geol 100(3):491–514

    Article  Google Scholar 

  • Stringham B (1960) Differences between barren and productive intrusive porphyry. Econ Geol 55(8):1622–1630

    Article  Google Scholar 

  • Tarkian M, Hünken U, Tokmakchieva M, Bogdanov K (2003) Precious-metal distribution and fluid-inclusion petrography of the Elatsite porphyry copper deposit, Bulgaria. Miner Deposita 38:261–281

    Article  Google Scholar 

  • Thoman MW, Zonge KL, Liu D (1996) Geophysical case history of north silver bell, PIMA Co, Arizona: a supergene-enriched porphyry copper deposit. http://zonge.com/wp-content/uploads/2013/06/MIN_Silverbell.pdf

  • Ulrich T, Günther D, Heinrich CA (2002) The evolution of a porphyry Cu-Au deposit, based on LA-ICP-MS analysis of fluid inclusions: Bajo de la Alumbrera, Argentina. Econ Geol 97:1889–1920. https://doi.org/10.2113/gsecongeo.97.8.1889

    Article  Google Scholar 

  • Uribe-Mogollon C, Maher K (2020) White mica geochemistry: discriminating between Barren and mineralized porphyry systems. Econ Geol 115(2):325–354

    Article  Google Scholar 

  • Watanabe Y, Sato R, Sulaksono A (2018) Role of potassic alteration for porphyry Cu mineralization: implication for the absence of porphyry cu deposits in Japan. Resour Geol 68(2):195–207

    Article  Google Scholar 

  • Weis P, Driesner T, Heinrich C (2012) Porphyry-copper ore shells form at stable pressure-temperature fronts within dynamic fluid plumes. Science (new York, n.y). https://doi.org/10.1126/science.1225009

    Article  Google Scholar 

  • Wells TJ, Meffre S, Cooke DR, Steadman J, Hoye JL (2021) Assessment of magmatic fertility using pXRF on altered rocks from the Ordovician Macquarie Arc, New South Wales. Aust J Earth Sci 68(3):397–409

    Article  Google Scholar 

  • Williamson B, Herrington R, Morris A (2016) Porphyry copper enrichment linked to excess aluminium in plagioclase. Nat Geosci 9:237–241

    Article  Google Scholar 

  • Winterburn PA, Noble RR, Lawie D (2020) Advances in exploration geochemistry, 2007 to 2017 and beyond. Geochem Explor Environ Anal 20(2):157–166

    Article  Google Scholar 

  • Zarasvandi A, Liaghat S, Lentz D, Hosseini M (2013) Characteristics of mineralizing fluids of the Darreh-Zerreshk and Ali-Abad Porphyry Copper Deposits, Central Iran, determined by fluid inclusion microthermometry. Resour Geol 63(2):188–209

    Article  Google Scholar 

  • Ziaii M, Carranza EJ, Ziaei M (2011) Application of geochemical zonality coefficients in mineral prospectivity mapping. Comput Geosci 37:1935–1945

    Article  Google Scholar 

  • Zürcher L, Bookstrom AA, Hammarstrom JM, Mars JC, Ludington S, Zientek ML, Dunlap P, Wallis JC, with contributions from Drew, L.J., Sutphin, D.M., Berger, B.R., Herrington, R.J., Billa, M., Kuşcu, I., Moon, C.J. ,and Richards, J.P. (2015). Porphyry copper assessment of the Tethys region of western and southern Asia. U.S. Geological Survey Scientific Investigations Report 2010–5090–V. https://doi.org/10.3133/sir20105090V

Download references

Acknowledgements

Undoubtedly, writing this article would not be accomplished without the great insights of various geoscientists. Many thanks to IMIDRO and Parsi Kan Kav Campany for providing exploration datasets. I also have to appreciate the members of the above-mentioned groups, especially my colleagues at Parsi Kan Kav, who have had extensive efforts during the Gardaneh Salavat project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyyed Reza Mashhadi.

Ethics declarations

Conflict of interest

The author declares no conflicts of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mashhadi, S.R. Gardaneh Salavat porphyry copper system: Is it about metal endowment or fertility of the porphyritic intrusion?. Acta Geochim 41, 496–514 (2022). https://doi.org/10.1007/s11631-022-00535-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-022-00535-0

Keywords

Navigation