Skip to main content
Log in

A molecular simulation study of Cs-Cl and Cs-F ion pairs in hydrothermal fluids

  • Original Article
  • Published:
Acta Geochimica Aims and scope Submit manuscript

Abstract

Magmatic-hydrothermal processes play an important role in the transport, enrichment, and mineralization of cesium. In this study, classical molecular dynamics simulations were performed to investigate the properties of Cs-Cl and Cs-F ion pairs in hydrothermal fluids. The association constants (log10KA(m)) under a wide range of temperature (i.e. 298–1273 K) and fluid density (i.e. 0.1–1.0 g/cm3) were derived from the potential of mean force (PMF) curves. The results indicate that Cs-Cl and Cs-F ion pairs have similar stabilities. This is different from other alkali metal cations (e.g., Li+, Na+, and K+), which prefer binding with F over Cl. The stabilities of Cs-Cl and Cs-F ion pairs increase with increasing temperature (except for the fluid density ≤ 0.1 g/cm3) or decreasing fluid density, which is similar to other alkali halide ion pairs. Comparisons among the stabilities of Cs-Cl/F and other alkali halide ion pairs indicate that the Li–F ion pair has the highest stability in hydrothermal fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen MP, Tildesley D (2017) Computer simulation of liquids (2nd ed.). Oxford University Press

  • Andersen HC (1983) Rattle: a “velocity” version of the shake algorithm for molecular dynamics calculations. J Comput Phys 52(1):24–34

    Article  Google Scholar 

  • Berendsen HJC, Grigera JR, Straatsma TP (1987) The missing term in effective pair potentials. J Phys Chem 91(24):6269–6271

    Article  Google Scholar 

  • Bradley DC, McCauley AD, Stillings LM (2017) Mineral-deposit model for lithium-cesium-tantalum pegmatites. U.S. Geological Survey Scientific Investigations Report 2010-5070-O

  • Brandes E, Stage C, Motschmann H, Rieder J, Buchner R (2014) Is surface layering of aqueous alkali halides determined by ion pairing in the bulk solution? J Chem Phys 141(18):10

    Article  Google Scholar 

  • Brugger J, Liu W, Etschmann B, Mei Y, Sherman DM, Testemale D (2016) A review of the coordination chemistry of hydrothermal systems, or do coordination changes make ore deposits? Chem Geol 447:219–253

    Article  Google Scholar 

  • Černý P (2005) The Tanco rare-element pegmatite deposit, Manitoba: regional context, internal anatomy, and global comparisons. In: Linnen RL, Samson IM (eds), Rare-element geochemistry and mineral deposits. GAC Short Course Notes, vol. 17. Geological Association of Canada, pp 127–158

  • Černý P, Ercit TS (2005) The classification of granitic pegmatites revisited. Can Mineral 43:2005–2026

    Article  Google Scholar 

  • Chen AA, Pappu RV (2007) Quantitative characterization of ion pairing and cluster formation in strong 1:1 electrolytes. J Phys Chem B 111(23):6469–6478

    Article  Google Scholar 

  • Chen T, Hefter G, Buchner R (2003) Dielectric spectroscopy of aqueous solutions of KCl and CsCl. J Phys Chem A 107(20):4025–4031

    Article  Google Scholar 

  • Chialvo AA, Simonson JM (2003) Aqueous Na+Cl pair association from liquidlike to steamlike densities along near-critical isotherms. J Chem Phys 118(17):7921–7929

    Article  Google Scholar 

  • Cui ST, Harris JG (1994) Ion association and liquid structure in supercritical water solutions of sodium chloride: a microscopic view from molecular dynamics simulations. Chem Eng Sci 49(17):2749–2763

    Article  Google Scholar 

  • Dang LX (1992) Development of nonadditive intermolecular potentials using molecular dynamics: solvation of Li+ and F ions in polarizable water. J Chem Phys 96(9):6970–6977

    Article  Google Scholar 

  • Dang LX (1995) Mechanism and thermodynamics of ion selectivity in aqueous solutions of 18-crown-6 ether: a molecular dynamics study. J Am Chem Soc 117(26):6954–6960

    Article  Google Scholar 

  • European Union (2018) Report on critical raw materials and the circular economy

  • Fennell CJ, Bizjak A, Vlachy V, Dill KA (2009) Ion pairing in molecular simulations of aqueous alkali halide solutions. J Phys Chem B 113(19):6782–6791

    Article  Google Scholar 

  • Foustoukos DI, Seyfried WE Jr (2007) Trace element partitioning between vapor, brine and halite under extreme phase separation conditions. Geochim Cosmochim Acta 71(8):2056–2071

    Article  Google Scholar 

  • Franck EU (1961) Uberkritisches wasser als elektrolytisches losungsmittel. Angew Chem 73(10):309–322

    Article  Google Scholar 

  • Fuoss RM (1980) Conductimetric determination of thermodynamic pairing constants for symmetrical electrolytes. Proc Natl Acad Sci USA 77(1):34–38

    Article  Google Scholar 

  • Gao J (1994) Simulation of the Na+Cl ion-pair in supercritical water. J Phys Chem 98(24):6049–6053

    Article  Google Scholar 

  • Gujt J, Bester-Rogac M, Hribar-Lee B (2014) An investigation of ion-pairing of alkali metal halides in aqueous solutions using the electrical conductivity and the Monte Carlo computer simulation methods. J Mol Liq 190:34–41

    Article  Google Scholar 

  • He M, Liu X, Lu X, Wang R (2017) Molecular simulation study on K+-Cl ion pair in geological fluids. Acta Geochim 36(1):1–8

    Article  Google Scholar 

  • Hefter GT, Salomon M (1996) Conductivities of KF and CsF in methanol at 25°C. J Solut Chem 25(6):541–553

    Article  Google Scholar 

  • Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31(3):1695–1697

    Article  Google Scholar 

  • Joung IS, Cheatham TE III (2008) Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J Phys Chem B 112(30):9020–9041

    Article  Google Scholar 

  • Justice MC, Justice JC (1976) Ionic interactions in solutions. I. The association concepts and McMillan-Mayer theory. J Solut Chem 5(8): 543–561

  • Kumar N, Leray I, Depauw A (2016) Chemically derived optical sensors for the detection of cesium ions. Coord Chem Rev 310:1–15

    Article  Google Scholar 

  • London D, Morgan GB, Icenhower J (1998) Stability and solubility of pollucite in granitic systems at 200 MPa H2O. Can Mineral 36(2):497–510

    Google Scholar 

  • London D (2018) Ore-forming processes within granitic pegmatites. Ore Geol Rev 101:349–383

    Article  Google Scholar 

  • Manohar S, Atkinson G (1993) The effect of high pressure on the ion pair equilibrium constant of alkali metal fluorides: a spectrophotometric study. J Solut Chem 22(10):859–872

    Article  Google Scholar 

  • Marcus Y, Hefter G (2006) Ion pairing. Chem Rev 106(11):4585–4621

    Article  Google Scholar 

  • Mohorič T, Bren U (2017) Microwave irradiation affects ion pairing in aqueous solutions of alkali halide salts. J Chem Phys 146(4):9

    Article  Google Scholar 

  • Nosé S (1984a) A molecular dynamics method for simulations in the canonical ensemble. Mol Phys 52(2):255–268

    Article  Google Scholar 

  • Nosé S (1984b) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81(1):511–519

    Article  Google Scholar 

  • Paterson R, Jalota SK, Dunsmore HS (1971) Ion association of caesium chloride solutions and its effect upon the interionic frictional coefficients of an irreversible thermodynamic analysis. J Chem Soc A (0): 2116–2121

  • Pethybridge AD, Spiers DJ (1974) Association constants of 1:1 electrolytes in water from conductivity measurements. J Chem Soc Chem Commun 11:423–424

    Article  Google Scholar 

  • Pethybridge AD, Spiers DJ (1977) Conductance of some alkali metal halides in dilute aqueous solution at 25°C. J Chem Soc Faraday Trans 73:768–775

    Article  Google Scholar 

  • Plugatyr A, Svishchev IM (2009) Accurate thermodynamic and dielectric equations of state for high-temperature simulated water. Fluid Phase Equil 277(2):145–151

    Article  Google Scholar 

  • Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23(3):327–341

    Article  Google Scholar 

  • Smith DE, Dang LX (1994) Computer-simulations of NaCl association in polarizable water. J Chem Phys 100(5):3757–3766

    Article  Google Scholar 

  • Stubbs JM (2016) Molecular simulations of supercritical fluid systems. J Supercrit Fluids 108:104–122

    Article  Google Scholar 

  • Takamoto M, Hong FL, Higashi R, Katori H (2005) An optical lattice clock. Nature 435:321–324

    Article  Google Scholar 

  • Todorov IT, Smith W, Trachenko K, Dove MT (2006) DL_POLY_3: New dimensions in molecular dynamics simulations via massive parallelism. J Mater Chem 16(20):1911–1918

    Article  Google Scholar 

  • U.S. Department of the Interior, U.S. Geological Survey (2017) Critical mineral resources of the United States - economic and environmental geology and prospects for future supply. USGS Professional Paper.

  • U.S. Geological Survey (2011) Mineral commodity summaries 2011. U.S. Geological Survey

  • Varala R, Rao KS (2015) Cesium salts in organic synthesis: a review. Curr Org Chem 19(13):1242–1274

    Article  Google Scholar 

  • Wagner W, Cooper JR, Dittmann A, Kijima J, Kretzschmar HJ, Kruse A, Mareš R, Oguchi K, Sato H, Stöcker I, Šifner O, Takaishi Y, Tanishita I, Trübenbach J, Willkommen T (2000) The IAPWS industrial formulation 1997 for the thermodynamic properties of water and steam. J Eng Gas Turbines Power 122(1):150–184

    Article  Google Scholar 

  • Wang RC, Hu H, Zhang AC, Huang XL, Ni P (2004) Pollucite and the cesium-dominant analogue of polylithionite as expressions of extreme Cs enrichment in the Yichun topaz-lepidolite granite, southern China. Can Mineral 42(3):883–896

    Article  Google Scholar 

  • Wang RC, Hu H, Zhang AC, Fontan F, Zhang H, De Parseval P (2006) Occurrence and late re-equilibration of pollucite from the Koktokay no. 3 pegmatite, Altai, northwestern China. Am Miner 91(5–6): 729–739

  • Wang RC, Hu H, Zhang AC, Fontan F, de Parseval P, Jiang SY (2007) Cs-dominant polylithionite in the Koktokay#3 pegmatite, Altai, NW China: in situ micro-characterization and implication for the storage of radioactive cesium. Contrib Mineral Petrol 153:355–367

    Article  Google Scholar 

  • Wang RC, Che XD, Zhang WL, Zhang AC, Zhang H (2009) Geochemical evolution and late re-equilibration of Na-Cs-rich beryl from the Koktokay #3 pegmatite (Altai, NW China). Eur J Mineral 21(4):795–809

    Article  Google Scholar 

  • Wang T, Zhang X, Liu X, Lu X, Wang R (2021) A molecular dynamics study of Li speciation in hydrothermal fluids and silicate melts. Chem Geol 584: 120528

  • Yui K, Sakuma M, Funazukuri T (2010) Molecular dynamics simulation on ion-pair association of NaCl from ambient to supercritical water. Fluid Phase Equil 297(2):227–235

    Article  Google Scholar 

  • Zhang X, Liu X, He M, Zhang Y, Sun Y, Lu X (2020) A molecular dynamics simulation study of KF and NaF ion pairs in hydrothermal fluids. Fluid Phase Equil 518: 112625

  • Zhang ZG, Duan ZH (2004) Lithium chloride ionic association in dilute aqueous solution: a constrained molecular dynamics study. Chem Phys 297(1–3):221–233

    Article  Google Scholar 

  • Zhang Z, Duan Z (2005) Prediction of the PVT properties of water over wide range of temperatures and pressures from molecular dynamics simulation. Phys Earth Planet Inter 149(3–4):335–354

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Nos 92062213, 91855209, 42125202 and 41872041). We acknowledge the financial support from the State Key Laboratory for Mineral Deposits Research at Nanjing University. We are grateful to the High Performance Computing Center (HPCC) of Nanjing University for doing the numerical calculations in this paper on its blade cluster system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiandong Liu.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 408 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Liu, X., Wang, T. et al. A molecular simulation study of Cs-Cl and Cs-F ion pairs in hydrothermal fluids. Acta Geochim 41, 325–334 (2022). https://doi.org/10.1007/s11631-022-00527-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-022-00527-0

Keywords

Navigation