Skip to main content
Log in

Using zircon saturation thermometry of source magma in strongly altered volcanic ashes

  • Original Article
  • Published:
Acta Geochimica Aims and scope Submit manuscript

Abstract

The present study deals with the possibilities of applying the zircon saturation thermometry, which is based on the equilibrium between the zircon crystals and the melt, to strongly altered volcanic ashes—bentonites. It proposes an alternative to a widely used method of calculating magma temperature from Zr content and major component composition (Boehnke in Chem Geol 351:324–333, 2013), that is not suitable for bentonites, as most of the major components have been largely altered in these rocks. For calculating source magma temperatures in strongly altered volcanic ashes, the exponential function from the Zr (ppm)/Al2O(%) ratio with compositional corrections from the TiO2/Al2O3 ratio was found applicable. The idea to use the ratios of these elements is based on the low mobility of these elements in the earth's surface conditions. Temperatures of magma, forming in the partial melting process, are assessed from the bulk rock composition. Pre-eruption temperatures were estimated from the composition of fine fractions of bentonites. The accuracy of the new method was established from comparison with the method by Boehnke et al. (Chem Geol 351:324–333, 2013). The difference between the two methods was mostly less than ± 30° to ± 50°. The comparison with the magma temperature, estimated from the sanidine composition, revealed 13° lower values on average. Although the proposed method for estimating the source magma temperatures is less precise than the method of accounting for detailed rock compositions, it can be used in strongly altered rocks, where other methods are not usable. The new method still enables differentiation between felsic source magmas originating at low or high temperatures. Early Palaeozoic bentonites in the Baltic Basin can be divided, according to the source magma temperatures, into two types: (1) Low temperature (650–790 °C), containing potassium-rich sanidine and abundant biotite (S type), (2) high temperature (770–850 °C) with sodium-rich sanidine and scarce biotite (I type).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

All data generated and analyzed during this study are included in this published article and its supplementary information files.

References

  • Badurina L, Šegvić B, Mandic O, Slovenec D (2021) Miocene Tuffs from the Dinarides and Eastern Alps as Proxies of the Pannonian Basin Lithosphere Dynamics and Tropospheric Circulation Patterns in Central Europe. J Geol Soc. https://doi.org/10.1144/jgs2020-262

    Article  Google Scholar 

  • Bastias J, Calderón M, Israel L, Hervé F, Spikings R, Pankhurst R, Castillo P, Fanning M, Ugalde R (2020) The Byers Basin: Jurassic-Cretaceous tectonic and depositional evolution of the forearc deposits of the South Shetland Islands and its implications for the northern Antarctic Peninsula. Int Geol Rev 62:1467–1484

    Article  Google Scholar 

  • Batchelor RA (2009) Geochemical “Golden Spike” for Lower Palaeozoic metabentonites. Earth Environ Sci Trans R Soc Edinb 99:177–187

    Google Scholar 

  • Bergström SM, Huff WD, Kolata DR, Bauert H (1995) Nomenclature, stratigraphy, chemical fingerprinting and areal distribution of some Middle Ordovician K bentonites in Baltoscandia. Geol Föreningens Förhandlingar 117:1–13

    Google Scholar 

  • Bergström SM, Toprak FÖ, Huff WD, Mundil R (2008) Implications of a new, biostratigraphically well-controlled, radio-isotopic age for the lower Telychian Stage of the Llandovery Series (Lower Silurian, Sweden). Episodes 31:309–314

    Article  Google Scholar 

  • Boehnke P, Watson EB, Trail D, Harrison TM, Schmitt AK (2013) Zircon saturation re-revisited. Chem Geol 351:324–334

    Article  Google Scholar 

  • Borg LE, Clynne MA (1998) The petrogenesis of felsic calc-alkaline magmas from the southernmost Cascades, California: origin by partial melting of basaltic lower crust. J Petrol 39:1197–1222

    Article  Google Scholar 

  • Borg LE, Clynne MA, Bullen TD (1997) The variable role of slab-derived fluids in the generation of a suite of primitive calc-alkaline lavas from the Southernmost Cascades, California. Can Miner 35:425–452

    Google Scholar 

  • Chappell BW, White AJR, Williams IS, Wyborn D (2004) Low- and high-temperature granites. Trans R Soc Edinb Earth Sci 95:125–140

    Article  Google Scholar 

  • Christidis GE, Huff WD (2009) Geological aspects and genesis of bentonites. Elements 5:93–98, special issue: Bentonites – versatile clays

  • Clemens JD, Bea F, Harley SL (2012) Granite Petrogenesis. Mineralogical Society of Great Britain and Ireland, Landmark Papers 4

  • Clynne MA (1990) Stratigraphic, lithologic, and major element geochemical constraints on magmatic evolution at Lassen volcanic center, California. J Geophys Res 95(B12):19651–19669

    Article  Google Scholar 

  • Clynne MA, Calvert AT, Wolfe EW, Evarts RC, Fleck RJ, Lanphere MA (2008) The pleistocene eruptive history of Mount St. Helens, Washington, from 300,000 to 12,800 years before present. In: Sherrod DR, Scott WE, Stauffer PH (eds) A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006. US Geological Survey Professional Paper 1750-28:593–628

  • Cramer BD, Condon DJ, Söderlund U, Marshall C, Worton GJ, Thomas AT, Ray CM, DC, Perrier V, Boomer I, Patchett PJ, Jeppsson L, (2012) U-Pb (zircon) age constraints on the timing and duration of Wenlock (Silurian) paleocommunity collapse and recovery during the ‘Big Crisis.’ Bull Geol Soc Am 124:1841–1857

    Article  Google Scholar 

  • Dahlquist P, Calner M, Kallaste T, Kiipli T, Siir S (2012) Geochemical variations within the mid-Silurian Grötlingbo Bentonite of Sweden and the East Baltic area—discriminating between magmatic composition, ash transport fractionation and diagenetic effects. GFF 134:273–282

    Article  Google Scholar 

  • Du Bray EA (1995) Geochemistry and petrology of Oligocene and Miocene ash-flow tuffs of the southeastern Great Basin, Nevada. US Geol Surv Prof Pap 1559:1–39

    Google Scholar 

  • Du Bray EA (2007) Time, space, and composition relations among northern Nevada intrusive rocks and their metallogenic implications. Geosphere 3:381–405

    Article  Google Scholar 

  • Du Bray EA, Snee LW, Pallister JS (2004) Geochemistry and geochronology of Middle Tertiary volcanic rocks of the central Chiricahua Mountains, southeast Arizona. US Geol Surv Prof Pap 1684:1–57

    Google Scholar 

  • Feng MS, Meng WB, Zhang CG, Qing HR, Chi GX, Wang J, Peng YW, Wen HG, Huang H (2021) Geochronology and geochemistry of the ‘green-bean rock’ (GBR, a potassium-rich felsic tuff) in the western margin of the Yangtze platform, SW China: Significance for the Olenekian-Anisian boundary and the Paleo-Tethys tectonics. Lithos 382–383:1922

    Google Scholar 

  • Gee DG, Fossen H, Henriksen N, Higgins AK (2008) From the early Paleozoic platforms of Baltica and Laurentia to the Caledonide orogen of Scandinavia and Greenland. Episodes 31:44–51

    Article  Google Scholar 

  • Ghiorso MS, Evans BW (2008) Thermodynamics of rhombohedral oxide solid solutions and a revision of the Fe–Ti two-oxide geothermometer and oxygen-barometer. Am J Sci 308:957–1039

    Article  Google Scholar 

  • Hanchar JM, Watson EB (2003) Zircon saturation thermometry. In: Hanchar JM, Hoskin PWO (eds) Zircon, vol 53. Mineralogical Society of America, Reviews in Mineralogy and Geochemistry, Washington, pp 89–112

    Chapter  Google Scholar 

  • Hannon JS, Dietsch C, Huff WD (2020) Trace-element and Sr and Nd isotopic geochemistry of Cretaceous bentonites in Wyoming and South Dakota tracks magmatic processes during eastward migration of Farallon arc plutons. Geol Soc Am Bull. https://doi.org/10.1130/B35796.1

    Article  Google Scholar 

  • Hannon JS, Huff WD (2019) Assessing the preservation and provenance of Sr and Nd isotopic signatures in Cretaceous volcanic ash beds. Lithos 346–347:105145

    Article  Google Scholar 

  • Huff WD (2016) K-bentonites: a review. Am Miner 101:43–70

    Article  Google Scholar 

  • Huff WD, Kolata DR, Bergström SM (1996) Large-magnitude Middle Ordovician volcanic ash falls in North America and Europe: dimensions, emplacement and post-emplacement characteristics. J Volcanol Geoth Res 73:285–301

    Article  Google Scholar 

  • Inanli FÖ, Huff WD, Bergström SM (2009) The Lower Silurian (Llandovery) Osmundsberg K-bentonite in Baltoscandia and the British Isles: chemical fingerprinting and regional correlation. GFF 131:269–279

    Article  Google Scholar 

  • Isozaki Y, Aoki K, Nakama T, Yanai S (2010) New insight into a subduction-related orogen: a reappraisal of the geotectonic framework and evolution of the Japanese Islands. Gondwana Res 18:82–105

    Article  Google Scholar 

  • Kiipli T (2021) Silurian volcanism recorded in sedimentary sections at the southwestern margin of the East European Platform: geochemical correlation and tectono-magmatic interpretation. Geol Q. https://doi.org/10.7306/gq.1580

    Article  Google Scholar 

  • Kiipli T, Batchelor RA, Bernal JP, Cowing C, Hagel-Brunnstrom M, Ingham MN, Johnson D, Kivisilla J, Knaack C, Kump P, Lozano R, Michiels D, Orlova K, Pirrus E, Rousseau RM, Ruzicka J, Sandstrom H, Willis JP (2000) Seven sedimentary rock reference samples from Estonia. Oil Shale 17:215–223

    Google Scholar 

  • Kiipli T, Dahlquist P, Kallaste T, Kiipli E, Nõlvak J (2015) Upper Katian (Ordovician) bentonites in the East Baltic, Scandinavia and Scotland: geochemical correlation and volcanic source interpretation. Geol Mag 152:589–602

    Article  Google Scholar 

  • Kiipli T, Einasto R, Kallaste T, Nestor V, Perens H, Siir S (2011) Geochemistry and correlation of volcanic ash beds from the Rootsiküla Stage (Wenlock-Ludlow) in the eastern Baltic. Est J Earth Sci 60:207–219

    Article  Google Scholar 

  • Kiipli T, Hints R, Kallaste T, Nielsen AT, Pajusaar S, Schovsbo NH (2020) Tectono-magmatic division of the Late Ordovician (Sandbian) volcanism at the south-western margin of Baltica using immobile trace elements: relations to the plate movements in the Iapetus Palaeo-Ocean. Geol J 55:5155–5165

    Article  Google Scholar 

  • Kiipli T, Hints R, Kallaste T, Verš E, Voolma M (2017) Immobile and mobile elements during the transition of volcanic ash to bentonite—an example from the Early Palaeozoic sedimentary section of the Baltic Basin. Sed Geol 347:148–159

    Article  Google Scholar 

  • Kiipli T, Jeppsson L, Kallaste T, Söderlund U (2008) Correlation of Silurian bentonites from Gotland and the eastern Baltic using sanidine phenocryst composition, and biostratigraphical consequences. J Geol Soc 165:211–220

    Article  Google Scholar 

  • Kiipli T, Kallaste T, Kiipli E, Radzevičius S (2013) Correlation of Silurian bentonites based on the immobile elements in the East Baltic and Scandinavia. GFF 135:152–161

    Article  Google Scholar 

  • Kiipli T, Kallaste T, Nestor V (2010) Composition and correlation of volcanic ash beds of Silurian age from the eastern Baltic. Geol Mag 147:895–909

    Article  Google Scholar 

  • Kiipli T, Kallaste T, Nestor V (2012) Correlation of upper Llandovery—lower Wenlock bentonites in the När (Gotland, Sweden) and Ventspils D3 (Latvia) drill cores: role of volcanic ash clouds and shelf sea currents in determining bentonite areal distribution. Est J Earth Sci 61:295–306

    Article  Google Scholar 

  • Kiipli T, Soesoo A, Kallaste T (2014) Geochemical evolution of Caledonian volcanism recorded in the sedimentary rocks of the eastern Baltic region. In: Corfu F, Gasser D, Chew DM (eds) New perspectives on the Caledonides of Scandinavia and related areas. Geological Society of London Special Publications 390: pp 177–192

  • Li W, Shi Z, Yin G, Tian Y, Wang Y, Zhang J (2021) Origin and tectonic implications of the early Middle Triassic tuffs in the western Yangtze Craton: insight into whole-rock geochemical and zircon U-Pb and Hf isotopic signatures. Gondwana Res 93:142–161

    Article  Google Scholar 

  • Mamani M, Ibarra I, Carlier G, Fornari M (2004) Petrología y geoquímica del magmatismo alcalino de la zona noroeste del Altiplano peruano (departamento de Puno). In: Jacay J, Sempere T (eds) Nuevas contribuciones del IRD y sus contrapartes al conocimiento geológico del sur del Perú: Sociedad Geológica del Perú, Publicación Especial no 5: pp 157–174

  • Mamani M, Tassara A, Wörner G (2008) Composition and structural control of crustal domains in the Central Andes. Geochem Geophys Geosyst. https://doi.org/10.1029/2007GC001925

    Article  Google Scholar 

  • Mamani M, Wörner G, Sempere T (2010) Geochemical variations in igneous rocks of the Central Andean orocline (13°S to 18°S): tracing crustal thickening and magma generation through time and space. Geol Soc Am Bull 122:162–182. https://doi.org/10.1130/B26538.1

    Article  Google Scholar 

  • Miller CF, McDowell SM, Mapes RW (2003) Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology 31:529–532

    Article  Google Scholar 

  • Miller CF, Wark DA (2008) Supervolcanoes and their explosive supereruptions. Elements 4, Special issue: Supervolcanoes: 11–16

  • Nekvasil H (1992) Ternary feldspar crystallization in high-temperature felsic magma. Am Miner 77:592–604

    Google Scholar 

  • Peccerillo A (2005) Plio-Quaternary volcanism in Italy—petrology, geochemistry, geodynamics. Springer, Berlin, p 364

    Google Scholar 

  • Petford N, Cruden AR, McCaffrey KJW, Vigneresse J-L (2000) Granite magma formation, transport and emplacement in the Earth`s crust. Nature 408:669–673

    Article  Google Scholar 

  • Ray DC, Collings AVJ, Worton GJ, Jones G (2011) Upper Wenlock bentonites from Wren`s Nest Hill, Dudley; comparisons with prominent bentonites along Wenlock Edge, Shropshire, England. Geol Mag 148:670–681

    Article  Google Scholar 

  • Sell BK, Samson SD, Mitchell CE, McLaughlin PI, Koenig AE, Leslie SA (2015) Stratigraphic correlations using trace elements in apatite from Late Ordovician (Sandbian-Katian) K-bentonites of eastern North America. GSA Bull 127:1259–1274

    Article  Google Scholar 

  • Siir S, Kallaste T, Kiipli T, Hints R (2015) Internal stratification of two thick Ordovician bentonites of Estonia: deciphering primary magmatic, sedimentary, environmental and diagenetic signatures. Est J Earth Sci 64:140–158

    Article  Google Scholar 

  • Schmitt AK, Simon JI (2004) Boron isotopic variations in hydrous rhyolitic melts: a case study from Long Valley, California. Contrib Miner Petrol 146:590–605

    Article  Google Scholar 

  • Spears DA (2012) The origin of tonsteins, an overview, and links with sea-tearths, fireclays, and fragmental clay rocks. Int J Coal Geol 94:22–31

    Article  Google Scholar 

  • Trela W, Bąk E, Pańczyk M (2017) Upper Ordovician and Silurian ash beds in the Holy Cross Mountains, Poland: preservation in mudrock facies and relation to atmospheric circulation in the Southern Hemisphere. J Geol Soc 175:352–360

    Article  Google Scholar 

  • Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and compositional effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304

    Article  Google Scholar 

  • Watson EB, Harrison TM (2005) Zircon thermometer reveals minimum melting conditions on earliest Earth. Science 308:841–844

    Article  Google Scholar 

  • Zhang Y, Luo T, Gan T, Zhou M, Han X (2021) Early Silurian Wuchuan–Sihui–Shaoguan exhalative sedimentary pyrite belt, South China: constraints from zircon dating for K-bentonite of the giant Dajiangping deposit. Acta Geochimica 40:1–12

    Article  Google Scholar 

Download references

Acknowledgements

Author thanks Toivo Kallaste for separation of fractions and for XRF analyse. Mari-Leen Kiipli prepared and performed micro-analyse of sanidine phenocrysts and improved language. Joaquin Bastias and an anonymous reviewer kindly helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarmo Kiipli.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiipli, T. Using zircon saturation thermometry of source magma in strongly altered volcanic ashes. Acta Geochim 41, 406–418 (2022). https://doi.org/10.1007/s11631-021-00520-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-021-00520-z

Keywords

Navigation