Skip to main content
Log in

Use of δ18O, δ 13C and NO3to identify hydrogeochemical processes related to contamination in an aquifer located in central Mexico

  • Original Article
  • Published:
Acta Geochimica Aims and scope Submit manuscript

Abstract

In this work, an isotopic analysis of δ18O, δ 13C, and NO3concentrations was carried out to identify the origin and the processes related to the contamination of an aquifer located in the state of Guanajuato, Mexico. The research identified the possible sources of δ13C in groundwater. During groundwater flow, CO2 participates in different hydrogeochemical reactions in which the dissolution of carbonates or biochemical processes related to biodegradation stand out. Isotopic data of δ13C, δ18O, and the hydrogeochemical behavior of NO3 and HCO3 in water, in addition to isotopic data and the chemical composition of limestones in the study area, were determined to establish the isotopic signature and the processes undergone by the rocks. The isotopic signature of rock and water samples indicated that metamorphic limestones contributed with carbon dioxide to deep groundwater, while in the upper aquifer, bacterial metabolic reactions during nitrification–denitrification could modify the isotopic signature of δ13C in some wells, although atmospheric contribution also plays a role. The modification of the carbon isotopic component is related to the precipitation of calcite in specific regions of the study area, input of atmospheric CO2, and soil (e. g. the possible participation of C4-type plants in the assimilation-release of carbon). This process is not confirmed or completely ruled out in this study since agriculture is excessively developed throughout the region. The joint interpretation of isotopic values and the hydrogeochemical behavior of major and conservative elements help in identifying possible pollution processes in which different carbon sources are related.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated and analyzed during this study are included in this published article and its supplementary information files.

References

  • Akbar H, Timothy JK, Jagadish T, M. Golam M, Apurbo KC, Muhammad F, Rajan B, Fahad S, Hasanuzzaman M (2020) Agricultural land degradation: processes and problems undermining future food security. In: Fahad S, Hasanuzzaman M, Alam M, Ullah H,Saeed M, Khan AK, Adnan M (Ed.), Environment, Climate, Plant and Vegetation Growth. Springer Publ Ltd, Springer Nature Switzerland AG. Part of Springer Nature. pp 17–62, https://doi.org/10.1007/978-3-030-49732-3

  • APHA (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, Washington DC

  • Aravena R, Wassenaar LI, Barker JF (1995) Estimating 14C groundwater ages in a methanogenic aquifer. Water Resour Res 31:2307–2317

    Article  Google Scholar 

  • Armienta MA, Rodríguez R, Ceniceros N, Cruz O, Aguayo A, Morales P, Cienfuegos E (2014) Groundwater quality and geothermal energy. The case of Cerro Prieto geothermal field Mexico. Renew Energy 64:236–254. https://doi.org/10.1016/j.renene.2013.09.018

    Article  Google Scholar 

  • Awad S ( 2014) Analysing groundwater using the 13C isotope. In: 8th International Conference on material sciences (CSM8-ISM5) physics procedia 55: 35–40

  • Ayyildiz T, Tekin E, Satir M (2004) Water circulation near the mixed-water and microbiologic activity of the Mesozoic Dolomite Sequence, an example from the Central Taurus, Turkey. Carb Evap 19:107–117

    Article  Google Scholar 

  • Baez LJA (2012) Estratigrafía de la parte sur del distrito minero de Guanajuato, México. (Master Thesis). Universidad Nacional Autónoma de México, Centro de Geociencias, Querétaro, México, pp 127

  • Báez-Pérez A, Limón-Ortega A, González-Molina L, Ramírez-Barrientos CE, Bautista-Cruz A (2017) Effect of conservation agriculture practice on some chemical properties of Vertisols. Revista Mexicana De Ciencias Agrícolas 8(4):759–772

    Google Scholar 

  • Báez-Pérez A, Huerta ME, Velázquez GJ, Bautista CMA (2011) Acumulación y flujo de carbono en vertisoles cultivados en labranza de conservación. In: estado actual del conocimiento del ciclo del carbono y sus interacciones en México. Paz F y Cuevas RM (eds.) Síntesis a 2011 del programa mexicano del carbono. Instituto Nacional de Ecología. México. D.F. 204–211 pp.

  • Baumgartner LP, Valley JW (2001) Stable isotope transport and contact metamorphic fluid flow. Stable Isotope Geochem Rev Miner Geochem 43:415–467

    Article  Google Scholar 

  • Berner RA (2004) The Phanerozoic carbon cycle: CO2 and O2: Oxford University Press. Pp 158

  • Bottrell S, Hipkins EV, Lane JM, Zegos RA, Banks D, Frengstad BS (2017) Carbon-13 in groundwater from English and Norwegian crystalline rock aquifers: a tool for deducing the origin of alkalinity? Sustain Water Resour Manag 5:267–287. https://doi.org/10.1007/s40899-017-0203-7

    Article  Google Scholar 

  • Buonocunto FP, Sprovieri M, Bellanca A, D’argenio B, Ferreri V, Neri R, Ferruzza G (2002) Cyclostratigraphy and high-frequency carbon isotope fluctuations in Upper Cretaceous shallow-water carbonates, southern Italy. Sedimentology 49:1321–1337

    Article  Google Scholar 

  • Burns DA, Kendall C (2002) Analysis of d15N and d18O to differentiate NO3- sources in runoff at two watersheds in the Catskill Mountains of New York. Water Resour Res 38(9–1):9–11

    Google Scholar 

  • CEAG (Comisión Estatal del Agua de Guanajuato) (2018) Compendio del agua subterránea en Guanajuato. http://agua.guanajuato.gob.mx/pdf/agua_subterranea.pdf

  • Cerca LM, Aguirre GJ, López M (2000) The geologic evolution of the southern Sierra de Guanajuato, Mexico: a documented example of the transition from the Sierra Madre Occidental to the Mexican Volcanic Belt. Int Geol Rev 42:131–151

    Article  Google Scholar 

  • Cerca LM (1998) Relación estratigráfica y geocronológica entre el volcanismo de la Sierra Madre Occidental y el Cinturón Volcánico Mexicano en la parte sur de la Sierra de Guanajuato. Implicaciones geocronológicas y tectónicas (Tesis de maestría). Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, México.

  • Cerling TE, Solomon DK, Quade J, Borman JR (1991) On the isotopic composition of carbon in soil carbon dioxide. Geochim Cosmochim Acta 55:3403–3405

    Article  Google Scholar 

  • Clark I (2015) Groundwater geochemistry and isotopes. CRC Press, Boca Raton, FL, p 457

    Book  Google Scholar 

  • Clark I, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis Publishers, Boca Raton, pp 138–140

  • Coetsiers M, Walraevens K (2009) A new correction model for 14C ages in aquifers with complex geochemistry-Application to the Neogene Aquifer Belgium. Appl Geochem 24(5):768–776

    Article  Google Scholar 

  • CONAGUA (Comisión Nacional del Agua) (2015) Actualización de la disponibilidad media anual de agua subterránea acuífero (1115) valle de Celaya, Estado de Guanajuato. Gerencia de evaluación y ordenamiento de acuíferos. Diario oficial de la Federación. Recuperado de https://www.gob.mx/cms/uploads/attachment/file/103024/DR_1115.pdf

  • Coplen TB, Brand WA, Gehre M, Gröning M, Meijer HA, Toman B, Verkouteren RM (2006) New Guidelines for δ13C Measurements. Anal Chem 78(7):2439–2441. https://doi.org/10.1021/ac052027c

    Article  Google Scholar 

  • Corona CP (1988) Análisis estratigráfico estructural de la porción centro–sur de la Sierra de Guanajuato, México: México, Instituto Politécnico Nacional, Escuela Superior de Ingeniería y Arquitectura, tesis de licenciatura, p 60

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703

    Article  Google Scholar 

  • Cronin AA, Barth JAC, Elliot T, Kalin RM (2005) Recharge velocity and geochemical evolution for the Permo-Triassic Sherwood Sandstone, Northern Ireland. J Hydrol 315:308–324

    Article  Google Scholar 

  • Cuellar JL (2010) Enciclopedia de los municipios y delegaciones de México (estado de Guanajuato). Recuperado de www.inafed.gob.mex/work/enciclopedia/EMM11guanajuato/municipios/11007a.html

  • del Río-Varela P, Nieto-Samaniego AF, Alaniz-Álvarez SA, Ángeles-Moreno E, Escalona-Alcázar FJ, del Pilar-Martínez A (2020) Geología y estructura de las sierras de Guanajuato y Codornices, Mesa Central México. Bol Soc Geol Mex 72(1):1–20. https://doi.org/10.18268/bsgm2020v72n1a071019

    Article  Google Scholar 

  • Dodds W K, Whiles M R (2020) Chapter 20 – Predation and foods Webs. In: Freshwater Ecology (Third Edition). 621–651. Academic Press

  • Echegoyén SJ, Romero MS, Velázquez SS (1970) Geología y yacimientos minerales de la parte central del Distrito Minero de Guanajuato. Consejo de Recursos Naturales No Renovables. Boletín 75. México. Pp 36

  • Edmunds WM, Carrillo-Rivera JJ, Cardona A (2002) Geochemical evolution of groundwater beneath Mexico City. J Hydrol 258(1–4):1–24. https://doi.org/10.1016/S0022-1694(01)00461-9

    Article  Google Scholar 

  • Epstein S, Mayeda T (1953) Variation of 18O content of waters from natural sources. Geochim Cosmochim Acta 4:213–224

    Article  Google Scholar 

  • Faure G (1977) Principles of isotope geology. John Wiley & Sons, New York, p 345

    Google Scholar 

  • Fisher JK, Price GD, Hart MB, Leng ML (2005) Stable isotope analysis of the Cenomanian-Turonian (Late Cretaceous) oceanic anoxic event of the Crimea. Cre Res 26:853–863

    Article  Google Scholar 

  • Fontes JCh, Garnier JM (1979) Determination of the initial 14C activity of total dissolved carbon: a review of existing models and a new approach. Water Resour Res 15:399–413

  • Gehre M, Geilmann H, Richter J, Werner RW, Brand W (2004) Continuous flow 2H/1H and 18O/16O analysis of water samples with dual inlet precision. Rapid Commun Mass SP 18:2650–2660

    Article  Google Scholar 

  • George E, Horst WJ, Neumann E (2012) Chapter 17 – Adaptation of plants to adverse chemical soil conditions. Marschner’s Mineral Nutrition of Higher Plant. Academic press, Elsevier, pp 409–472

    Google Scholar 

  • Gonfiantini R (1981) The δ-notation and the mass-spectrometric measurement techniques. En Stable Isotope Hydrology, Deuterium and Oxygen-18 in the Water Cycle. IAEA, Vienna, pp 356

  • González-Sánchez F, Puente-Solís R, González-Partida E, Camprubi A (2008) Estratigrafía del Noreste de México y su relación con los yacimientos estratoligados de fluorite, barita, celestina y Zn-Pb. Boletín De La Sociedad Geológica Mexicana. 59(1):43–62. https://doi.org/10.18268/BSGM2007v59n1a4

    Article  Google Scholar 

  • González-Trinidad J, Pacheco-Guerrero A, Júnez-Ferreira H, Bautista-Capetillo C, Hernández-Antonio A (2017) Identifying groundwater recharge sites through environmental stable isotopes in an alluvial aquifer. Water 9(8):569. https://doi.org/10.3390/w9080569

    Article  Google Scholar 

  • Han LF, Plummer LN (2016) A review of single-sample-based models and other approaches for radiocarbon dating of dissolved inorganic carbon in groundwater. Earth Sci Rev 152:119–142

    Article  Google Scholar 

  • Hartland A, Fenwick GD, Bury SJ (2011) Tracing sewage-derived organic matter into a shallow groundwater food web using stable isotope and fluorescence signatures. Mar Freshwater Res 62:119–129

    Article  Google Scholar 

  • Hatzenpichler R, Connon SA, Goudeau D, Malmstrom RR, Woyke T, Orphan VJ (2016) Visualizing in-situ translational activity for identifying and sorting slow-growing archaeal−bacterial consortia. Proc Natl Acad Sci USA 113:E4069–E4078. https://doi.org/10.1073/pnas.1603757113

  • Hoefs J (1992) The stable isotope composition of sedimentary iron oxides with special reference to Banded Iron Formations. In Isotopic signatures and sedimentary records. Lecture Notes in Earth Sci 43:199–213

    Article  Google Scholar 

  • Hoefs J (2009) Stable isotope geochemistry springer science & Business Media Eds. p 285, ISBN: 3540707034, 9783540707035

  • Horst A, Mahlknecht J, Merkel BJ (2007) Estimating groundwater mixing and origin in an overexploited aquifer in Guanajuato, Mexico, using stable isotopes (strontium-87, carbon-13, deuterium and oxygen-18)†. Isot Environ Health Stud 43(4):323–338. https://doi.org/10.1080/10256010701701756

    Article  Google Scholar 

  • Horst A, Mahlknecht J, Merkel BJ, Aravena R, Ramos-Arroyo YR (2008) Evaluation of the recharge processes and impacts of irrigation on groundwater using CFCs and radiogenic isotopes in the Silao-Romita basin Mexico. Hydrogeol J 16(8):1601–1614. https://doi.org/10.1007/s10040-008-0318-x

    Article  Google Scholar 

  • Hounslow A (1999) Water quality data: analysis and interpretation. CRC Press, Taylor & Francis Group, pp 416, ISBN 9780873716765

  • Hu T (2010) Analysis on economic benefit of Dalian suburban farming. Chin Agr Sci Bull 26:393–397

    Google Scholar 

  • Hudson JD (1977) Stable isotopes and limestone lithification. J Geol Soc Lond 133:637–660

    Article  Google Scholar 

  • Instituto Nacional de Estadística y Geografía (INEGI) (2017) Anuario Estadístico y Geográfico de Guanajuato. http://www.datatur.sectur.gob.mx/ITxEF_Docs/GTO_ANUARIO_PDF.pdf

  • Juárez-Aparicio F (2019) Evaluación de rocas calizas del Bajío Guanajuatense en la remoción de arsénico y fluoruro en el agua subterránea. UNAM, Tesis Maestría, p 113

    Google Scholar 

  • Kalin RM (2000) Radiocarbon Dating of Groundwater Systems. Environmental Tracers In Subsurface Hydrology. Springer Science Business Media, LLC, New York, pp 111–145

    Chapter  Google Scholar 

  • Katz BG, Coplen TB, Bullen TD, Davis JH (1997) Use of chemical and isotopic tracers to characterize the interactions between ground water and surface water in mantled karst. Ground Water 35:1014–1028. https://doi.org/10.1111/j.1745-6584.1997.tb00174.x

    Article  Google Scholar 

  • Khon MJ (2010) Carbon isotope compositions of terrestrial C3plants as indicators of (paleo)ecology and (paleo)climate. Proc Nat Acad Sci 107(46):19691–19695. https://doi.org/10.1073/pnas.1004933107

    Article  Google Scholar 

  • Labastida I, Armienta MA, Lara-Castro RH, Aguayo A, Cruz O, Ceniceros N (2013) Treatment of mining acid leachates with indigenous limestone, Zimapan Mexico. J Hazard Mater 262:1187–1195

    Article  Google Scholar 

  • Labastida I, Armienta MA, Beltrán M, Caballero G, Romero P, Rosales MA (2017) La piedra caliza como opción de remediación sostenible para aguas contaminadas con flúor. Revista De Exploración Geoquímica 183:206–213

    Google Scholar 

  • Landa-Arreguín JFA, Villanueva Estrada RE, Rodriguez Díaz AA, Morales-Arredondo JI, Rocha-Miller R, Alfonso P (2021) Evidence of a new geothermal prospect in the northern-central Trans-mexican Volcanic Belt: Rancho Nuevo, Guanajuato Mexico. J Iberian Geol. 9:1–20. https://doi.org/10.1007/s41513-021-00173-0

  • Li Z, Huang T, Ma B, Long Y, Zhang F, Tian J, Li Y, Pang Z (2020) Baseline groundwater quality before Shale Gas Development in Xishui, Southwest China: analyses of hydrochemistry and multiple environmental isotopes (2H, 18O, 13C, 87Sr/86Sr, 11B, and Noble Gas Isotopes). Water 12(6):1741. https://doi.org/10.3390/w12061741

  • Macpherson GL, Roberts JA, Blair JM, Townsend MA, Fowle DA, Beisner KR (2008) Increasing shallow groundwater CO2 and limestone weathering Konza Prairie, USA. Geochim Cosmochim Acta 72:5581–5599

    Article  Google Scholar 

  • Mahlknecht J, Steinich B, Navarro de León I (2004) Groundwater chemistry and mass transfers in the Independence aquifer, central Mexico, by using multivariate statistics and mass-balance models. Environ Geol 45(6):781–795. https://doi.org/10.1007/s00254-003-0938-3

    Article  Google Scholar 

  • Mahlknecht J, Gárfias-Solis J, Aravena R, Tesch R (2006) Geochemical and isotopic investigations on groundwater residence time and flow in the Independence Basin Mexico. J Hydrol 324(1–4):283–300. https://doi.org/10.1016/j.jhydrol.2005.09.021

    Article  Google Scholar 

  • Mahlknecht J, Horst A, Hernández-Limón G, Aravena R (2008) Groundwater geochemistry of the Chihuahua City region in the Rio Conchos Basin (northern Mexico) and implications for water resources management. Hydrol Process 22(24):4736–4751. https://doi.org/10.1002/hyp.7084

    Article  Google Scholar 

  • Malone MJ, Slowey NC, Henderson GM (2001) Early diagenesis of shallow-water periplatform carbonate sediments, leeward margin, Great Bahama Bank (Ocean Drilling Project Leg 166). Geol Soc Am Bull 113:881–894

    Article  Google Scholar 

  • Marshall JD (1992) Climatic and oceanographic isotopic signals from the carbonate rock record and their preservation. Geol Mag 129:143–160

    Article  Google Scholar 

  • McCrea JM (1950) On the isotopic chemistry of carbonates and a paleotemperature scale. J Chem Phys 18:849–857

    Article  Google Scholar 

  • Mehmood I, Bari A, Irshad S, Khalid F, Liaqat S, Anjum H, Fahad S (2020) Carbon Cycle in response to global warming, in: Fahad S, Hasanuzzaman M, Alam M, Ullah H,Saeed M, Khan AK, Adnan M (Ed.), Environment, climate, plant and vegetation growth. Springer Publ Ltd, Springer Nature Switzerland AG. Part of Springer Nature. pp 17–62. https://doi.org/10.1007/978-3-030-49732-3

  • Mengelle-López JJ, Canet C, Prol-Ledesma RM, González-Partida E, Camprubí A (2013) Secuencia vulcano-sedimentaria La Esperanza (Cretácico Inferior) al norte de Guanajuato, México: Importancia en la exploración de sulfuros masivos vulcanogénicos. Boletín De La Sociedad Geológica Mexicana 65(3):511–525

    Article  Google Scholar 

  • Mengis M, Walther U, Bernasconi SM, Wehrli B (2001) Limitations of using d18O for the source identification of nitrate in agricultural soils. Environ Sci Technol 35:1840–1844. https://doi.org/10.1021/es0001815

    Article  Google Scholar 

  • Minet EP, Goodhue R, Meier-Augenstein W, Kalin RM, Fenton O, Richards KG, Coxon CE (2017) Combining stable isotopes with contamination indicators: A method for improved investigation of nitrate sources and dynamics in aquifers with mixed nitrogen inputs. Water Res. https://doi.org/10.1016/j.watres.2017.07.041

    Article  Google Scholar 

  • Miranda-Gasca MA (1978) Estudio Geológico-Geoquímico RegionaI deI área de Xichú, Estado de Guanajuato. Bol. Soc. Geol. Mexicana. 34(2):101–106. https://doi.org/10.18268/BSGM1978v39n2a11

    Article  Google Scholar 

  • Mohammadzadeh H, Clark I (2011) Bioattenuation in groundwater impacted by landfill leachate traced with δ13C. Ground Water 49:880–890

    Article  Google Scholar 

  • Montiel JA (2020). Análisis isotópico de las aguas subterráneas en la cuenca de México. Tesis de Maestría. Posgrado en Ciencias de la Tierra. UNAM, pp 118

  • Morales JI, Armienta MA (2020) Evaluation of the carbono dioxide behavior in a termal aquifer located at Central Mexico and its relation to silicate weathering. Int J Environ Sci Technol 17:3411–3430. https://doi.org/10.1007/s13762-020-02683-3

    Article  Google Scholar 

  • Morales JI, Rodríguez R, Armienta MA, Villanueva RE (2016) A low-temperature geothermal system in central Mexico: hydrogeochemistry and potential heat source. Geochem J 50(3):211–225

    Article  Google Scholar 

  • Morales-Arredondo JI, Armienta MA, Segovia N (2017) Groundwater chemistry and overpressure evidences in cerro prieto geothermal field. Geofluids. https://doi.org/10.1155/2017/2395730

    Article  Google Scholar 

  • Morales-Arredondo JI, Armienta MA, Rodríguez R (2018) Estimation of exposure to high fluoride contents in groundwater supply in some villages in Guanajuato Mexico. Tecnología y Ciencias Del Agua 9(3):156–179

    Article  Google Scholar 

  • Morales-Arredondo JI, Flores-Ocampo IZ, Armienta Hernández MA, Moran-Ramírez J, Hernández-Hernández MA, Landa-Arreguin JF (2020) Evaluación del comportamiento hidrogeoquímico e isotópico del NO3-, SO42-, HCO3-, Cl- B y del δ18O δ2H en un acuífero contaminado por nitratos, ubicado en una zona agrícola y ganaderadel Centro de México: implicaciones ambientales. Geofísica Internacional 59(3):169–194

    Article  Google Scholar 

  • Moran-Ramírez J, Morales-Arredondo JI, Armienta Hernández MA, Ramos-Leal JA (2020) Quantification of the Mixture of Hydrothermal and Fresh Water in Tectonic Valleys. Journal of Earth Sciences 8(2):194–201. https://doi.org/10.1007/s12583-020-1294-x

    Article  Google Scholar 

  • Muller M (1986) 13C variation in limestone on an aquifer-wide scale and its effects on groundwater 14C dating Models. Radiocarbon 28(3):1041–1051

    Article  Google Scholar 

  • Musat N, Foster T, Vagner A, Kuypers MMM (2012) Detecting metabolic activities in single cells, with emphasis on nanoSIMS. FEMS Microbiol Rev 36:486–511

    Article  Google Scholar 

  • Nagendra R, Kamalak Kannan BV, Sen G, Gilbert H, Bakkiaraj D, Nallapa RA, Jaiprakash BC (2010) Sequence surfaces and paleobathymetric trends in Albian to Maastrichtian sediments of Ariyalur area, Cauvery Basin India. Mar Petrol Geol 28(4):895–905. https://doi.org/10.1016/j.marpetgeo.2010.04.002

    Article  Google Scholar 

  • Nelson CS, Smith AM (1996) Stable oxygen and carbon isotope compositional fields for skeletal and diagenetic components in New Zealand Cenozoic nontropical carbonate sediments and limestones: a synthesis and review. N Z J Geol Geophys 39:93–107

    Article  Google Scholar 

  • Nieto-Samaniego AF, Macías-Romo C, Alaniz-Álvarez SA (1996) Nuevas edades isotópicas de la cubierta volcánica cenozoica de la parte meridional de la Mesa Central. México Revista Mexicana De Ciencias Geológicas 13(1):117–122

    Google Scholar 

  • Nowak ME, Schwab VF, Lazar CS, Behrendt T, Kohlhepp B, Totsche KU, Küsel K, Trumbore SE (2017) Carbon isotopes of dissolved inorganic carbon reflect utilization of different carbon sources by microbial communities in two limestone aquifer assemblages. Hydrol Earth Syst Sci 21:4283–4300

    Article  Google Scholar 

  • Ogrinc N, Tamse S, Zavadlav S, Vrzel J, Jin L (2019) Evaluation of geochemical processes and nitrate pollution sources at the Ljubljansko polje aquifer (Slovenia): a stable isotope perspective. Sci Total Environ 646:1588–1600

    Article  Google Scholar 

  • Omana L, Miranda-Aviles R, Puy-Alquiza MJ (2015) Facies calizas de aguas someras del Berriasiano-Valanginiano temprano de la Cuenca de Arperos: Una propuesta a partir de las asociaciones de foraminíferos en los clastos del Conglomerado Guanajuato México central. Bol Soc Geol Mex 67(1):45–57

    Google Scholar 

  • Paces T, Šmejkal V (2004) Magmatic and fossil components of mineral waters in the Eager-river continental rift. In Wanty RB, Seal II RR (eds) Water – rock interaction. A. A. Balkema Publishers, pp. 167–172

  • Pérez-Venzor JA, Aranda-Gómez JJ, McDowell F, Solorio-Munguía JG (1996) Geología del Volcán Palo Huérfano, Guanajuato México. Revista Mexicana De Ciencias Geológicas 13(2):174–183

    Google Scholar 

  • Peters RL, Groenendijk P, Vlam M, Zuidema PA (2015) Detectinglong-term growth trends using tree rings: a critical evaluation of meth-ods. Global Change Biol 21:2040–2054

    Article  Google Scholar 

  • Phillips FM, Tansey MK, Peeters LA, Cheng S, Long A (1989) An isotopic investigation of groundwater in the Central Basin, New Mexico: carbon 14 dating as a basis for numerical modeling. Water Resour Res 25:2259–2273

  • Pu H, Song W, Wu J (2020) Using soil water stable isotopes to investigate soil water movement in a water conservation Forest in Hani Terrace. Water 12(12):3520. https://doi.org/10.3390/w12123520

    Article  Google Scholar 

  • Rae BD, Long BM, Förster B, Nguyen ND, Velanis CN, Atkinson N, McCormick AJ (2017) Progress and challenges of engineering a biophysical CO2-concentrating mechanism into higher plants. J Exp Bot 68(14):3717–3737

    Article  Google Scholar 

  • Révész KM, Landwehr JM (2002) δ13C and δ18O isotopic composition of CaCO3 measured by continuous flow isotope ratio mass spectrometry: statistical evaluation and verification by application to Devils Hole core DH-11 calcite. Rapid Commun Mass Spectrom 16(22):2102–2114

    Article  Google Scholar 

  • Romero JH, Palacios OL, Escobar BS (2017) Estimación de la sobreexplotación producida en el acuífero Valle de Celaya (México). Tecnología y Ciencias del Agua, 8(4): 127-138.

  • Rozanski K, Araguás-Araguás L, Gindiantini R (1992) Relation between long-term trends of oxygen-18 isotope composition of precipitation and climate. Science (in press)

  • Sabagh A, Hossain A, Islam MS, Ahmed S, Raza A, Iqbal MA, Wasaya A, Ratnasekera D, Arshad A, Kumari A, Danish S, Igboji PO, Datta R, Oksana S, Milan S, Brestic M, Singh K, Raza MA, and Fahad S (2021) Elevated CO2 in combination with heat stress influences the growth and productivity of cereals: adverse effect and adaptive mechanisms. In Fahad S, Sönmez O, Saud S, Wang D, Wu C, Adnan M, Arif M, Amanullah (eds) Engineering tolerance in crop plants against abiotic stress, 1st edn. Footprints of climate variability on plant diversity. CRC Press, Boca Raton, pp 310

  • Salifu M, Aiglsperger T, Alakangas L (2020) Biogeochemical Controls on 13CDIC Signatures from Circum-Neutral pH Groundwater in Cu–W–F Skarn Tailings to Acidic Downstream Surface Waters. Minerals 10(9):758. https://doi.org/10.3390/min10090758

    Article  Google Scholar 

  • Saller AH, More CH (1991) Geochemistry of meteoric calcite cements in some Pleistocene limestones. Sedimentology 38:601–621

    Article  Google Scholar 

  • Schwarcz HP, Schoeninger MJ (2011) Stable isotopes of carbon and nitrogen as tracers for Paleo-Diet Reconstruction, in: Baskaran M. (2011) Handbook of environmental isotope geochemistry: Advances in Isotope Geochemistry. Springer-Verlag Berlin Heidelberg pp 974. ISBN 978–3–642–10626–1

  • SEMARNAT (2019) Manifestación de Impacto Ambiental Modalidad Regional del Proyecto “Ampliación del Puente Ferroviario Km A 317+600, municipio de Villagrán, Guanajuato”. Informe técnico pp 239

  • Sierra-Rojas MI, Molina-Garza RS, Lawton TF (2016) The lower cretaceous atzompa formation In South-Central Mexico: record of evolution from extensional backarc basin margin To carbonate platform. J Sediment Res 86(6):712–733. https://doi.org/10.2110/jsr.2016.45

    Article  Google Scholar 

  • Singh A, Agrawal M (2015) Effects of ambient and elevated CO2 on growth, chlorophyll fluorescence, photosynthetic pigments, antioxidants, and secondary metabolites of Catharanthusroseus (L.) G Don. grown under three different soil N levels. Environ Sci Poll Res Int 22:3936–3946. https://doi.org/10.1007/s11356-014-3661-6

    Article  Google Scholar 

  • Skrzypek G, Mydłowski A, Dogramaci S, Hedley P, Gibson JJ, Grierson PF (2015) Estimation of evaporative loss based on the stable isotope composition of water using Hydrocalculator. J Hydrol 523:781–789

    Article  Google Scholar 

  • Stewart C, Damby DE, Tomašek I, Horwell CJ, Armienta MA, Ruiz-Hinojosa MG, Appleby M, Delmelle P, Cronin S, Ottley CJ, Oppenheimer C, Morman S (2020) Assessment of leachable elements in volcanic ashfall: A review and evaluation of a standardized protocol for ash hazard characterization. J Volcanol Geoth Res 392:106756. https://doi.org/10.1016/j.jvolgeores.2019.106756

    Article  Google Scholar 

  • Taylor BE, O’Neil JR (1977) Stable isotope studies of metasomatic Ca-Fe-Al-Si skarns and associated metamorphic and igneous rocks, Osgood Mountains, Nevada. Contr Miner Petrol 63:1–49

    Article  Google Scholar 

  • Terrado RA, Pasulka L, Lie AAY, Orphan VJ, Heidelberg KB, Caron DA (2017) Autotrophic and heterotrophic acquisition of carbon and nitrogen by a mixotrophic chrysophyte established through stable isotope analysis. ISME J 11:2022–2034. https://doi.org/10.1038/ismej.2017.68

    Article  Google Scholar 

  • Thompson A, Foster RA, Krupke A, Carter BJ, Musat N, Vaulot D, Kuypers MM, Zehr JP (2012) Unicellular cyanobacterium symbiotic with a single-celled eukaryotic alga. Science 337:1546–1550. https://doi.org/10.1126/science.1222700

    Article  Google Scholar 

  • Tokunaga TK, Kim Y, Conrad ME, Bill M, Hobson C, Williams KH, Dong W, Wam J, Robbins MJ, Long PE, Faybishenko B, Christensen JN, Hubbard SS (2016) Deep vadose zone respiration contributions to carbon dioxide fluxes from a semiarid floodplain. Vadose Zone J 15(7):1–14. https://doi.org/10.2136/vzj2016.02.0014

    Article  Google Scholar 

  • United States Environmental Protection Agency (1993) Method 353.2, Revision 2.0: Determination of Nitrate-Nitrite Nitrogen by Automated Colorimetry. pp 15 https://www.epa.gov/sites/production/files/2015-08/documents/method_353-2_1993.pdf

  • Vahrenkamp VC (1996) Carbon isotope stratigraphy of the upper Kharaib and shuaiba formations: implications for the Lower Cretaceous evolution of the Arabian Gulf region. Am Assoc Petrol Geol Bull 80:647–662

  • Valenzuela VL, Ramírez J, Reyes J, Uribe A, Mancilla O (2006) The origin of fluoride in groundwater supply to Hermosillo City, Sonora Mexico. Environ Geol 51(1):17–27

    Article  Google Scholar 

  • Valley JW (1986) Stable isotope geochemistry of metamorphic rocks. Rev Miner 16:445–489

    Google Scholar 

  • Valverde J, Castillo F (2002) Inventario físico de los recursos minerales del municipio Santa Cruz de Juventino Rosas, Gto. https://mapserver.sgm.gob.mx/InformesTecnicos/InventariosMinerosWeb/T1102VARJ0002_01.pdf

  • Van Breukelen BM, Roling WFM, Groen J, Griffioen J, van Verseveld HW (2003) Biogeochemistryand isotope geochemistry of a landfill leachate plume. J Contam Hydrol 65:245–268

    Article  Google Scholar 

  • Vandekerckhove TGL, Bodé S, De Mulder Ch, Vlaeminch SE, Boon N (2019) 13C Incorporation as a tool to estimate biomass yield in thermophilic and mesophilic nitrifying communities. Front Microbiol 10:192. https://doi.org/10.3389/fmicb.2019.00192

  • Vasquez-Cardenas D et al (2015) Microbial carbon metabolism associated with electrogenic sulphur oxidation in coastal sediments. ISME J 9:1966–1978. https://doi.org/10.1038/ismej.2015.10

    Article  Google Scholar 

  • Verma MP, Izquierdo G, Urbino GA, Gangloff S, García R, Aparicio A, Conte T, Armienta MA, Sánchez M, Gabriel JRP, Fajanela ID, Renderos R, Acha CBA, Prasetio R, Grajales IC, Reyes-Delgado L, Opondo K, Zendejas-Esparza R, Panama LA, Tapia-Salazar R, Lim PG, Javino F (2012) Inter-laboratory comparison of SiO2 analysis for geotermal wáter chemistry. Geothermics 44:33–42

    Article  Google Scholar 

  • Verma MP, Portugal E, Gangloff S, Armienta MA, Chandrasekharam D, Sanchez M, Renderos RE, Juanco M, van Geldern R (2015) Determination of carbonic species concentration in natural waters - Results from a worldwide proficiency test. Geostand Geoanal Res 39:233–255. https://doi.org/10.1111/j.1751-908X.2014.00306.x

    Article  Google Scholar 

  • Villanueva-Olea R, Barragán R, Palafox-Reyes JJ, Jiménez-López JC, Buitrón-Sánchez BE (2019) Microfacies and stable isotope analyses from the Carboniferous of the La Joya in Sierra Agua Verde, Sonora, Mexico. Boletín De La Sociedad Geológica Mexicana 71(3):587–607. https://doi.org/10.18268/BSGM2019v71n3a1

    Article  Google Scholar 

  • Vogel JC (1993) Variability of carbon isotope fractionation during photosynthesis. In: Ehleringer JR, Hall AE, Farquhar GD (eds) stable isotopes and plant carbon - water relations. Academic Press, San Diego, CA, pp 29–38

  • Walker MJC (2005) Quaternary Dating Methods. England, John Wiley & Sons. Chichester, pp 86. ISBN 0 470 86927 5v

  • Warner NR, Kresse TM, Hays PD, Down A, Karr JD, Jackson RB, Vengosh A (2013) Geochemical and isotopic variations in shallow groundwater in areas of the Fayetteville Shale development, north-central Arkansas. Appl Geochem 35:207–220

    Article  Google Scholar 

  • Wassenaar LI, Van Wilganburg SL, Larson K, Hobson KA (2009) A groundwater isoscape (D, 18O) for Mexico. J Geochem Explor 102:123–136

    Article  Google Scholar 

  • Werner RA, Brand WA (2001) Referencing strategies and techniques in stable isotope ratio analysis. Rapid Commun Mass Spectrom 15(7):501–519

    Article  Google Scholar 

  • Wigley TML (1975) Carbon 14 dating of groundwater from closed and open systems. Water Resour Res 11(2):324–328

    Article  Google Scholar 

  • Winter TC, Harvey JW, Franke OL, Alley WM (1998) Groundwater and surface water: A single resource. Circ. 1139. USGS, Reston, VA

  • Yue FJ, Li SL, Zhong J, Liu J (2018) Evaluation of factors driving seasonal nitrate variations in Surface and underground systems of a karst catchment. Vadose Zone J 17(1):1–10. https://doi.org/10.2136/vzj2017.04.0071

    Article  Google Scholar 

  • Zhang Y, Zhou A, Zhou J, Liu C, Cai H, Liu Y, Xu W (2015) Evaluating the source and fate of nitrate in the alluvial aquifer in the Shijiazhuang rural and suburban area, China: Hydrochemical and Muti-Isotopic Approaches. Water 7:1515–1537. https://doi.org/10.3390/w7041515

    Article  Google Scholar 

Download references

Acknowledgements

The study carried out in the region was financed by PAPIIT, and the grant number is IA101019. The authors would like to thank PAPIIT for its support and the scholarships provided to students Cuellar Ramírez E. The authors are thankful for the support of O. Cruz, and A. Aguayo from the Analytical Chemistry Laboratory at the Instituto de Geofisica, UNAM and Giron P. from the X-ray Fluorescence Laboratory. LANGEM. Institute of Geology- UNAM. We also thank R. Flores-Vargas for their help in the field campaigns.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Iván Morales-Arredondo.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morales-Arredondo, J.I., Hernández, M.A.A., Juárez-Aparicio, F. et al. Use of δ18O, δ 13C and NO3to identify hydrogeochemical processes related to contamination in an aquifer located in central Mexico. Acta Geochim 41, 367–392 (2022). https://doi.org/10.1007/s11631-021-00519-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-021-00519-6

Keywords

Navigation