Skip to main content
Log in

First-principle study of Ba isotopic fractionation during ion exchange processes

  • Original Article
  • Published:
Acta Geochimica Aims and scope Submit manuscript

Abstract

The potential utilization and development of the Ba isotope tool depend on an accurate δ137/134Ba determination of the samples. During the chemical purification, whether the adsorption process on the surface of the ion-exchange resin could lead to the Ba isotopic fractionation and the degree of fractionation directly influence the accurate δ137/134Ba determination. In the present work, first-principles calculations based on the density functional theory were used to quantify the Ba isotopic equilibrium fractionation factor between the aqueous solution and the resin in the acid leaching process. By constructing and optimizing the geometric configurations of Ba-containing species, (Ba(H2O)n2+, Ba(H2O)nCl2, Ba(H2O)n(NO3)2, and the adsorbed Ba2+ on the surface of the resin, extracting the harmonic vibrational frequencies, we finally at 298 K obtained the fractionations, Δ137/134Basoln-ads = 0.07‰, Δ137/134BaBa(H2O)nCl2-ads = 0.05‰, and Δ137/134BaBa(H2O)n(NO3)2-ads = 0.02‰. Overall, there were almost no Ba isotope fractionations during leaching. Although the Ba isotope fractionation can be magnified by the Rayleigh fractionation process in purification, the difference in δ137/134Ba between the initial and final stages did not exceed 0.060‰ (or 0.045‰) when leaching the standard sample with HCl or HNO3, which is equal to or less than the accuracy of Ba isotopic analysis. At a common yield of 89.75%, Ba isotopic fractionation induced by incomplete recovery was 0.015‰ for HCl (or 0.011‰ for HNO3). Finally, if the influence of an incomplete recovery on the δ137/134Ba determination needs to be ignored, the recovery is suggested to be not less than 67% for HCl (or 46% for HNO3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Antonelli MA, Schiller M, Schauble EA, Mittal T, DePaolo DJ, Chacko T, Grew ES, Tripoli B (2019) Kinetic and equilibrium Ca isotope effects in high-T rocks and minerals. Earth Planet Sci Lett 517:71–82

    Article  Google Scholar 

  • Bates SL, Hendry KR, Pryer HV, Kinsley CW, Pyle KM, Woodward EMS, Horner TJ (2017) Barium isotopes reveal the role of ocean circulation on barium cycling in the Atlantic. Geochim Cosmochim Acta 204:286–299

    Article  Google Scholar 

  • Bermingham KR, Mezger K, Scherer EE, Horan MF, Carlson RW, Upadhyay D, Magna T, Pack A (2016) Barium isotope abundances in meteorites and their implications for early Solar System evolution. Geochim Cosmochim Acta 175:282–298

    Article  Google Scholar 

  • Bigeleisen J, Mayer MG (1947) Calculation of equilibrium constants for isotopic exchange reactions. J Chem Phys 15:261–267

    Article  Google Scholar 

  • Böttcher ME, Geprags P, Neubert N, von Allmen K, Pretet C, Samankassou E, Nägler TF (2012) Barium isotope fractionation during experimental formation of the double carbonate BaMn[CO3]2 at ambient temperature. Isotopes Environ Health Stud 48:457–463

    Article  Google Scholar 

  • Bullen T, Chadwick O (2016) Ca, Sr and Ba stable isotopes reveal the fate of soil nutrients along a tropical climosequence in Hawaii. Chem Geol 422:25–45

    Article  Google Scholar 

  • Cao Z, Siebert C, Hathorne EC, Dai M, Frank M (2016) Constraining the oceanic barium cycle with stable barium isotopes. Earth Planet Sci Lett 434:1–9

    Article  Google Scholar 

  • Chaudhari MI, Soniat M, Rempe SB (2015) Octa-coordination and the aqueous Ba2+ ion. J Phys Chem B 1–24

  • D’Angelo P, Pavel NV, Roccatano D (1996) Multielectron excitations at the L edges of barium in aqueous solution. Phys Rev B 54:12129–12138

    Article  Google Scholar 

  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE Jr, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Comperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09 (Revision C.01). Gaussian Inc, Wallingford

  • Fujii T, Moynier F, Blichert-Toft J, Albarede F (2014) Density functional theory estimation of isotope fractionation of Fe, Ni, Cu, and Zn among species relevant to geochemical and biological environments. Geochim Cosmochim Acta 140:553–576

    Article  Google Scholar 

  • Godovikov AA, Hariya Y (1987) The connection between the properties of elements and compounds; mineralogical-crystallochemical classification of elements. Jour Fac Sci Hokkaido Univ Ser IV 22:357–385

    Google Scholar 

  • Gong Y, Zeng Z, Zhou C, Nan X, Yu H, Lu Y, Li W, Gou W, Cheng W, Huang F (2019) Barium isotopic fractionation in latosol developed from strongly weathered basalt. Sci Total Environ 687:1295–1304

    Article  Google Scholar 

  • Gong Y, Zeng Z, Cheng W, Lu Y, Zhang L, Yu H, Huang F (2020) Barium isotopic fractionation during strong weathering of basalt in a tropical climate. Environ Int 143:105896

    Article  Google Scholar 

  • Gong Y, Nan X, Yu H, Zeng Z, Huang F (2016) Barium isotope composition of a laterite profile derived from extremely weathered basalt. Goldschm Abstr 968

  • Hafizi M, Abolghasemi H, Moradi M, Milani SA (2011) Strontium adsorption from sulfuric acid solution by Dowex 50W-X resins. Chin J Chem Eng 19:267–272

    Article  Google Scholar 

  • He H, Zhang S, Zhu C, Liu Y (2016) Equilibrium and kinetic Si isotope fractionation factors and their implications for Si isotope distributions in the Earth’s surface environments. Acta Geochim 35:15–24

    Article  Google Scholar 

  • Horner TJ, Kinsley CW, Nielsen SG (2015) Barium-isotopic fractionation in seawater mediated by barite cycling and oceanic circulation. Earth Planet Sci Lett 430:511–522

    Article  Google Scholar 

  • Hsieh Y-T, Henderson GM (2017) Barium stable isotopes in the global ocean: tracer of Ba inputs and utilization. Earth Planet Sci Lett 473:269–278

    Article  Google Scholar 

  • Hsieh Y-T, Bridgestock L, Scheuermann PP, Seyfried WE Jr, Henderson GM (2020) Barium isotopes in mid-ocean ridge hydrothermal vent fluids: a source of isotopically heavy Ba to the ocean. Geochim Cosmochim Acta 292:348–363

    Article  Google Scholar 

  • Huang F, Wu Z, Huang S, Wu F (2014) First-principles calculations of equilibrium silicon isotope fractionation among mantle minerals. Geochim Cosmochim Acta 140:509–520

    Article  Google Scholar 

  • Huang F, Zhou C, Wang W, Kang J, Wu Z (2019) First-principles calculations of equilibrium Ca isotope fractionation: Implications for oldhamite formation and evolution of lunar magma ocean. Earth Planet Sci Lett 510:153–160

    Article  Google Scholar 

  • Huang F, Nan X, Hu M, Huang S, Huang J (2015) Barium isotope compositions of igneous rocks. Goldschm Abstr 1331

  • Hull S, Norberg ST, Ahmed I, Eriksson SG, Mohn CE (2011) High temperature crystal structures and superionic properties of SrCl2, SrBr2, BaCl2 and BaBr2. J Solid State Chem 184:2925–2935

    Article  Google Scholar 

  • Kawakita Y, Nagaya K, Yao M, Endo H (1993) Liquid-Glass transition of RbNO3-Cd(NO3)2. Japan J Appl Phys 32(supplement 32–2):706–708

    Article  Google Scholar 

  • Kim DW, Hong ChP, Kim ChS, Jeong YK, Jeon YSh, Lee JK (1997) Lithium isotope separation on an ion exchange resin having azacrown ether as an anchor group. J Radioanal Nucl Chem 220:229–231

    Article  Google Scholar 

  • Kondoh A, Oi T (1996) Fractionation of barium isotopes in cation-exchange chromatography. Sep Sci Technol 31:39–48

    Article  Google Scholar 

  • Korkisch J (1989) Handbook of ion exchange resins: their application to inorganic analytical chemistry. CRC Press, Boca Raton

    Google Scholar 

  • Liu Q, Tossell JA, Liu Y (2010) On the proper use of the Bigeleisen–Mayer equation and corrections to it in the calculation of isotopic fractionation equilibrium constants. Geochim Cosmochim Acta 74:6965–6983

    Article  Google Scholar 

  • Liu Y, Wang F, Yu C, Liu C, Gong L, Yang Z (2011) Structures and binding energies of Sr2+/Ba2+-water systems by ab initio and ABEEM/MM method. Acta Phys-Chim Sin 27:379–387

    Article  Google Scholar 

  • Liu S, Li Y, Ju Y, Liu J, Shi Y (2018) Equilibrium nickel isotope fractionation in nickel sulfide minerals. Geochim Cosmochim Acta 222:1–16

    Article  Google Scholar 

  • Mariotti A, Germon JC, Hubert P, Kaiser P, Létolle R, Tardieux A, Tardieux P (1981) Experimental determination of nitrogen kinetic isotope fractionation: Some principles; illustration for the denitrification and nitrification processes. Plant Soil 62:413–430

    Article  Google Scholar 

  • Mavromatis V, van Zuilen K, Purgstaller B, Baldermann A, Nägler TF, Dietzel M (2016) Barium isotope fractionation during witherite (BaCO3) dissolution, precipitation and at equilibrium. Geochim Cosmochim Acta 190:72–84

    Article  Google Scholar 

  • Méheut M, Schauble E (2014) Silicon isotope fractionation in silicate minerals: Insights from first-principles models of phyllosilicates, albite and pyrope. Geochim Cosmochim Acta 134:137–154

    Article  Google Scholar 

  • Meija J, Coplen TB, Berglund M, Brand WA, Bièvre PD, Gröning M, Holden NE, Irrgeher J, Loss RD, Walczyk T, Prohaska T (2016) Isotopic compositions of the elements 2013 (IUPAC Technical Report). Pure Appl Chem 88:293–306

    Article  Google Scholar 

  • Miyazaki T, Kimura J-I, Chang Q (2014) Analysis of stable isotope ratios of Ba by double-spike standard-sample bracketing using multiple-collector inductively coupled plasma mass spectrometry. J Anal at Spectrom 29:483–490

    Article  Google Scholar 

  • Nan X, Wu F, Zhang Z, Hou Z, Huang F, Yu H (2015) High-precision barium isotope measurements by MC-ICP-MS. J Anal at Spectrom 30:2307–2315

    Article  Google Scholar 

  • Nan X, Yu H, Rudnick RL, Gasching RM, Xu J, Li W, Zhang Q, Jin Z, Li X, Huang F (2018) Barium isotopic composition of the upper continental crust. Geochim Cosmochim Acta 233:33–49

    Article  Google Scholar 

  • Nielsen SG, Shu Y, Auro M, Yogodzinski G, Shinjo R, Plank T, Kay SM, Horner TJ (2020) Barium isotope systematics of subduction zones. Geochim Cosmochim Acta 275:1–18

    Article  Google Scholar 

  • Oi T, Ogino H (1992) Fractionation of strontium isotopes in cation-exchange chromatography. Sep Sci Technol 27:631–643

    Article  Google Scholar 

  • Oi T, Yanase S, Kakihana H (1987) Magnesium isotope fractionation in cation-exchange chromatography. Sep Sci Technol 22:2203–2215

    Article  Google Scholar 

  • Oi T, Morioka N, Ogino H, Kakihana H (1993) Fractionation of calcium isotopes in cation-exchange chromatography. Sep Sci Technol 28:1971–1983

    Article  Google Scholar 

  • Pehlivan E, Altun T (2006) The study of various parameters affecting the ion exchange of Cu2+, Zn2+, Ni2+, Cd2+, and Pb2+ from aqueous solution on Dowex 50W synthetic resin. J Hazard Mater B 134:149–156

    Article  Google Scholar 

  • Persson I, Sandstrom M, Yokoyama H, Chaudhry M (1995) Structure of the solvated strontium and barium ions in aqueous, dimethyl-sulfoxide and pyridine solution, and crystal-structure of strontium and barium hydroxide octahydrate. Zeitschr Naturforsch Sec A-J Phys Sci 50:21–37

    Google Scholar 

  • Pilet S, Baker MB, Muntener O, Stolper M (2011) Monte Carlo simulations of metasomatic enrichment in the lithosphere and implications for the source of alkaline basalts. J Petrol 52:1415–1442

    Article  Google Scholar 

  • Ranen MC, Jacobsen SB (2008) Fractionation corrections for high-precision multi-collector thermal ionization mass spectrometry. Lunar Plane Sci Abstr 29:1966

    Google Scholar 

  • Rayleigh JWS (1896) Theoretical considerations respective theseparation of gases diffusion and similar processes. Philos Mag 42:493–498

    Article  Google Scholar 

  • Rayner-Canham G (2011) Isodiagonality in the periodic table. Found Chem 13:121–129

    Article  Google Scholar 

  • Richet P, Bottinga Y, Javoy M (1977) Review of hydrogen, carbon, nitrogen, oxygen, sulfur, and chlorine stable isotope fractionation among gaseous molecules. Annu Rev Earth Planet Sci 5:65–110

    Article  Google Scholar 

  • Rossi V, Sadun C, Bencivenni L, Caminiti R (1994) Ab initio HF-SCF studies of the equilibrium structures and vibrational spectra of the Be(NO3)2, Mg(NO3)2 and Ca(NO3)2 molecules. J Mol Struct 314:247–260

    Article  Google Scholar 

  • Schauble EA (2004) Applying stable isotope fractionation theory to new systems. Rev Mineral Geochem 55:65–111

    Article  Google Scholar 

  • Schönbächler M, Fehr MA (2014) Basics of ion exchange chromatography for selected geological applications. In: Holland HD, Turekian KK (eds) A2-in: Treatise on geochemistry, vol 15, 2nd edn. Elsevier, Oxford, pp 123–146

    Chapter  Google Scholar 

  • Tang L, Su Y, Liu Y, Zhao J, Qiu R (2012) Nonstandard cages in the formation process of methane clathrate: Stability, structure, and spectroscopic implications from first-principles. J Chem Phys 136:224508–224518

    Article  Google Scholar 

  • Urey HC (1947) The thermodynamic properties of isotopic substances. J Chem Soc (london) 85:562–581

    Google Scholar 

  • van Zuilen K, Nägler TF, Bullen TD (2016a) Barium isotopic compositions of geological reference materials. Geostand Geoanal Res 40:543–558

    Article  Google Scholar 

  • van Zuilen K, Muller T, Nägler TF, Dietzel M, Kusters T (2016b) Experimental determination of barium isotope fractionation during diffusion and adsorption processes at low temperatures. Geochim Cosmochim Acta 186:226–241

    Article  Google Scholar 

  • von Allmen K, Böttcher ME, Samankassou E, Nägler TF (2010) Barium isotope fractionation in the global barium cycle: First evidence from barium minerals and precipitation experiments. Chem Geol 277:70–77

    Article  Google Scholar 

  • Vorster C, van der Walt TN, Coetzee PP (2008) Ion exchange separation of strontium and rubidiumon Dowex 50W–X8, using the complexation properties of EDTA and DCTA. Anal Bioanal Chem 392:287–296

    Article  Google Scholar 

  • Wang W, Qin T, Zhou C, Huang S, Wu Z, Huang F (2017) Concentration effect on equilibrium fractionation of Mg-Ca isotopes in carbonate minerals: Insights from first-principles calculations. Geochim Cosmochim Acta 208:185–197

    Article  Google Scholar 

  • Wang W, Zhou C, Liu Y, Wu Z, Huang F (2019) Equilibrium Mg isotope fractionation among aqueous Mg2+, carbonates, brucite and lizardite: Insights from first-principles molecular dynamics simulations. Geochim Cosmochim Acta 250:117–129

    Article  Google Scholar 

  • Wang W, Wu Z, Huang F (2021) Equilibrium barium isotope fractionation between minerals and aqueous solution from first-principles calculations. Geochim Cosmochim Acta 292:64–77

    Article  Google Scholar 

  • Wei Z, Yang L, Xu H, Farooq U, Xu X, Gao Y, Zheng W (2020) Hydration processes of barium chloride: Size-selected anion photoelectron spectroscopy and theoretical calculations of BaCl2-water clusters. J Chem Phys 153:134301–134310

    Article  Google Scholar 

  • Wong MW (1996) Vibrational frequency prediction using density functional theory. Chem Phys Lett 256:391–399

    Article  Google Scholar 

  • Wu F, Qin T, Li X, Liu Y, Huang J-H, Wu Z, Huang F (2015) First-principles investigation of vanadium isotope fractionation in solution and during adsorption. Earth Planet Sci Lett 426:216–224

    Article  Google Scholar 

  • Yan B, Zhou H, Li S (2020) Studies on association equilibrium of Mg2+ and SO42+ by confocal Raman spectroscopy. Chin J Process Eng 20:1064–1075

    Google Scholar 

  • Yobregat E, Fitoussia C, Bourdona B (2017) A new method for TIMS high precision analysis of Ba and Sr isotopes for cosmochemical studies. J Anal at Spectrom 32:1388–1399

    Article  Google Scholar 

  • Zhang Z, Kusalik PG, Guo G, Ning F, Wu N (2021) Insight on the stability of polycrystalline natural gas hydrates by molecular dynamics simulations. Fuel 289(119946):1–9

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Hebei Natural Sciences Foundation (Grant Nos. D2020402004 and D2021402020), Hebei Education Department Key Program (Grant No. ZD2018086), the State Natural Sciences Foundation (Grant No. 41603011), and Hebei University of Engineering Doctoral Special Program (Grant Nos. 17129033019 and 17129033020).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception and design study. Data collection and analysis: X.Y.J. and Y.F.W.; Methodology: L.C.X.; Writing, original draft preparation: X.Y.J.; Formal analysis and discussion: J.L. P.D.W., T.D.Z., and H.N.Z.; Writing, review and editing: X.Y.J. and L.C.X. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Le-Cai Xing.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 388 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, XY., Wang, YF., Xing, LC. et al. First-principle study of Ba isotopic fractionation during ion exchange processes. Acta Geochim 41, 121–131 (2022). https://doi.org/10.1007/s11631-021-00512-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-021-00512-z

Keywords

Navigation