Skip to main content
Log in

Validating the deep time carbonate carbon isotope records: effect of benthic flux on seafloor carbonate

  • Original Article
  • Published:
Acta Geochimica Aims and scope Submit manuscript

Abstract

It is a consensus that marine carbonate archives the isotopic composition of seawater dissolved inorganic carbon (DIC, δ13Csw), the largest active C reservoir in the hydrosphere. Carbonate carbon isotope (δ13Ccarb) excursions have been used to reflect perturbations of the global carbon cycle and related environmental change. However, the deep time δ13Ccarb records indicate faster and more pronounced perturbations of the carbon cycle compared to the present day. Here, we report δ13Ccarb and elemental compositions of Late Paleozoic carbonate sections from South China, showing negative correlations between δ13Ccarb and Fe2+ content of carbonate (Fecarb). We suggest that, because Late Paleozoic carbonate was mainly produced by benthic carbonate-secreting organisms, δ13Ccarb recorded the isotopic composition near the seafloor, where benthic flux derived from anaerobic organic matter degradation delivers both Fe2+ and 13C-depleted DIC from porewater. The binary mixing between seawater and benthic flux would result in the deviation of δ13Ccarb from δ13Csw. The negative correlation implies that δ13Ccarb is influenced by benthic flux and is affected by the seafloor redox and sedimentation rate. The deep time spatially heterogeneous and temporally oscillatory δ13Ccarb records in the basin-scale could be alternatively attributed to the variations of local environmental factors rather than a δ13Csw depth-gradient. Thus, the seafloor carbonate precipitation is continuously affected by diagenetic reactions in sediments, suggesting that δ13Ccarb recording the seawater DIC composition is conditional. Our study urges that the interpretation of δ13Ccarb should also consider the sedimentary process and depositional environment of marine carbonate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data and materials can be found in the main text and accompanying supplementary information.

References

  • Ahm ASC, Bjerrum CJ, Blättler CL, Swart PK, Higgins JA (2018) Quantifying early marine diagenesis in shallow-water carbonate sediments. Geochim Cosmochim Acta 236:140–159

    Article  Google Scholar 

  • Bergmann KD, Grotzinger JP, Fischer WW (2013) Biological Influences on seafloor carbonate precipitation. Palaios 28:99–115

    Article  Google Scholar 

  • Berner RA (2002) Examination of hypotheses for the permo-triassic boundary extinction by carbon cycle modeling. Proc Natl Acad Sci USA 99:4172–4177

    Article  Google Scholar 

  • Cai P, Shi X, Hong Q, Li Q, Liu L, Guo X, Dai M (2015) Using 224Ra/228Th disequilibrium to quantify benthic fluxes of dissolved inorganic carbon and nutrients into the Pearl River Estuary. Geochim Cosmochim Acta 170:188–203

    Article  Google Scholar 

  • Chang C, Hu WX, Wang XL, Yu H, Yang AH, Cao J, Yao SP (2017) Carbon isotope stratigraphy of the lower to middle Cambrian on the eastern Yangtze platform, South China. Palaeogeogr Palaeoclimatol Palaeoecol 479:90–101

    Article  Google Scholar 

  • Chen D, Tucker ME, Jiang M, Zhu J (2001a) Long-distance correlation between tectonic-controlled, isolated carbonate platforms by cyclostratigraphy and sequence stratigraphy in the Devonian of South China. Sedimentology 48:57–78

    Article  Google Scholar 

  • Chen D, Tucker ME, Zhu J, Jiang M (2001b) Carbonate sedimentation in a starved pull-apart basin, middle to late Devonian, southern Guilin, south China. Basin Res 13:141–167

    Article  Google Scholar 

  • Dale AW, Sommer S, Ryabenko E, Noffke A, Bohlen L, Wallmann K, Stolpovsky K, Greinert J, Pfannkuche O (2014) Benthic nitrogen fluxes and fractionation of nitrate in the Mauritanian oxygen minimum zone (Eastern Tropical North Atlantic). Geochim Cosmochim Acta 134:234–256

    Article  Google Scholar 

  • Dale AW, Nickelsen L, Scholz F, Hensen C, Oschlies A, Wallmann K (2015) A revised global estimate of dissolved iron fluxes from marine sediments. Glob Biogeochem Cycles 29:691–707

    Article  Google Scholar 

  • Davydov VI, Korn D, Schmitz MD (2012) The carboniferous period. In: Gradstein FM, Org JG, Schmitz MD, Org GM (eds) The geological time scale 2012. Elsevier, Amsterdam, pp 603–651

    Chapter  Google Scholar 

  • Derry LA (2010) A burial diagenesis origin for the Ediacaran Shuram-Wonoka carbon isotope anomaly. Earth Planet Sci Lett 294:152–162

    Article  Google Scholar 

  • Ding W, Dong L, Sun Y, Ma H, Xu Y, Yang R, Peng Y, Zhou C, Shen B (2019) Early animal evolution and highly oxygenated seafloor niches hosted by microbial mats. Sci Rep 9:13628

    Article  Google Scholar 

  • Fantle MS, Higgins J (2014) The effects of diagenesis and dolomitization on Ca and Mg isotopes in marine platform carbonates: implications for the geochemical cycles of Ca and Mg. Geochim Cosmochim Acta 142:458–481

    Article  Google Scholar 

  • Fike DA, Grotzinger JP, Pratt LM, Summons RE (2006) Oxidation of the Ediacaran ocean. Nature 444:744–747

    Article  Google Scholar 

  • Gradstein FM, Ogg JG, Schmitz MD, Ogg GM (2012) The geologic time scale 2012. Elsvier, Amsterdam

    Google Scholar 

  • Grotzinger JP, James NP (2000) Precambrian carbonates: evolution of understanding. In: Grotzinger JP, James NP (Eds) Carbonate sedimentation and diagenesis in the evolving precambrian world. SEPM society for sedimentary geology

  • Hance L, Hou H, Vachard D, Devuyst FX, Kalvoda J, Poty E, Wu X (2011) Upper famennian to visean foraminifers and some carbonate microproblematica from South China-Hunan Guangxi and Guizhou. Geological Publishing House, Beijing

    Google Scholar 

  • Higgins JA, Schrag DP (2010) Constraining magnesium cycling in marine sediments using magnesium isotopes. Geochim Cosmochim Acta 74:5039–5053

    Article  Google Scholar 

  • Higgins JA, Fischer WW, Schrag DP (2009) Oxygenation of the ocean and sediments: consequences for the seafloor carbonate factory. Earth Planet Sci Lett 284:25–33

    Article  Google Scholar 

  • Higgins JA, Blättler CL, Lundstrom EA, Santiago-Ramos DP, Akhtar AA, Crüger Ahm AS, Bialik O, Holmden C, Bradbury H, Murray ST, Swart PK (2018) Mineralogy, early marine diagenesis, and the chemistry of shallow-water carbonate sediments. Geochim Cosmochim Acta 220:512–534

    Article  Google Scholar 

  • Hoffman PF, Lamothe KG (2019) Seawater-buffered diagenesis, destruction of carbon isotope excursions, and the composition of DIC in Neoproterozoic oceans. Proc Natl Acad Sci USA 116:18874–18879

    Article  Google Scholar 

  • Hoffman PF, Kaufman AJ, Halverson GP, Schrag DP (1998) A Neoproterozoic snowball earth. Science 281:1342–1346

    Article  Google Scholar 

  • Houghton RA (2014) The contemporary carbon cycle, treatise on geochemistry. pp 399–435

  • Huang KJ, Shen B, Lang XG, Tang WB, Peng Y, Ke S, Kaufman AJ, Ma HR, Li FB (2015) Magnesium isotopic compositions of the mesoproterozoic dolostones: implications for Mg isotopic systematics of marine carbonates. Geochim Cosmochim Acta 164:333–351

    Article  Google Scholar 

  • Husson JM, Linzmeier BJ, Kitajima K, Ishida A, Maloof AC, Schoene B, Peters SE, Valley JW (2020) Large isotopic variability at the micron-scale in “Shuram” excursion carbonates from South Australia. Earth Planet Sci Lett 538:116211

    Article  Google Scholar 

  • Jacobsen SB, Kaufman AJ (1999) The Sr, C and O isotopic evolution of Neoproterozoic seawater. Chem Geol 161:37–57

    Article  Google Scholar 

  • Ji Q, Wei J, Wang H, Wang N, Luo X (1988) New Advances in the study of the Devonian-Carboniferous boundary stratotype in Muhua, Changshun, Guizhou——an introduction to the Daposhang Devonian-Carboniferous boundary section. Acta Geol Sin-Eng Ed 1:349–363

    Google Scholar 

  • Ji Q, Wang Z, Sheng H, Hou J, Feng R, Wei J, Wang S, Wang H, Xiang L, Fu G (1989) The dapoushang section: an excellent section for the Devonian-Carboniferous boundary stratotype in China. Science Press, Beijing

    Google Scholar 

  • Jiang G, Kaufman AJ, Christie-Blick N, Zhang S, Wu H (2007) Carbon isotope variability across the Ediacaran Yangtze platform in South China: implications for a large surface-to-deep ocean δ13C gradient. Earth Planet Sci Lett 261:303–320

    Article  Google Scholar 

  • Kaufman AJ, Knoll AH (1995) Neoproterozoic variations in the C-isotope composition of sea water: stratigraphic and biogeochemical implications. Precambrian Res 73:27–49

    Article  Google Scholar 

  • Krause AJ, Mills BJW, Zhang S, Planavsky NJ, Lenton TM, Poulton SW (2018) Stepwise oxygenation of the Paleozoic atmosphere. Nat Commun 9:4081

    Article  Google Scholar 

  • Kroopnick P (1985) The distribution of 13C of ΣCO2 in the world oceans. Deep sea research part A. Oceanogr Res Pap 32:57–84

    Google Scholar 

  • Kump LR, Arthur MA (1999) Interpreting carbon-isotope excursions: carbonates and organic matter. Chem Geol 161:181–198

    Article  Google Scholar 

  • Lang XG, Shen B, Peng YB, Huang KJ, Lv JM, Ma HR (2016) Ocean oxidation during the deposition of basal Ediacaran Doushantuo cap carbonates in the Yangtze platform, South China. Precambrian Res 281:253–268

    Article  Google Scholar 

  • Li FB, Teng FZ, Chen JT, Huang KJ, Wang SJ, Lang XG, Ma HR, Peng YB, Shen B (2016) Constraining ribbon rock dolomitization by Mg isotopes: Implications for the “dolomite problem.” Chem Geol 445:208–220

    Article  Google Scholar 

  • Malone MJ, Slowey NC, Henderson GM (2001) Early diagenesis of shallow-water periplatform carbonate sediments, leeward margin, Great Bahama Bank (Ocean Drilling Program Leg 166). Bull Geol Soc Am 113:881–894

    Article  Google Scholar 

  • Marshall JD (1992) Climatic and oceanographic isotopic signals from the carbonate rock record and their preservation. GeoM 129:143–160

    Google Scholar 

  • Martin RE (1995) Cyclic and secular variation in microfossil biomineralization: clues to the biogeochemical evolution of Phanerozoic oceans. Global Planet Change 11:1–23

    Article  Google Scholar 

  • McManus J, Berelson WM, Severmann S, Johnson KS, Hammond DE, Roy M, Coale KH (2012) Benthic manganese fluxes along the Oregon-California continental shelf and slope. Cont Shelf Res 43:71–85

    Article  Google Scholar 

  • Meister P, McKenzie JA, Vasconcelos C, Bernasconi S, Frank M, Gutjahr M, Schrag DP (2007) Dolomite formation in the dynamic deep biosphere: results from the Peru Margin. Sedimentology 54:1007–1032

    Article  Google Scholar 

  • Melim LA, Swart PK, Maliva RG (2001) Meteoric and Marine-Burial diagenesis in the subsurface of Great Bahama Bank, subsurface geology of a prograding carbonate platform margin Great Bahama Bank. SEPM Society for Sedimentary Geology. pp 137–161

  • Morford JL, Martin WR, Francois R, Carney CM (2009) A model for uranium, rhenium, and molybdenum diagenesis in marine sediments based on results from coastal locations. Geochim Cosmochim Acta 73:2938–2960

    Article  Google Scholar 

  • Patterson WP, Walter LM (1994) Depletion of 13C in seawater ΣCO2 on modern carbonate platforms: significance for the carbon isotopic record of carbonates. Geology 22:885–888

    Article  Google Scholar 

  • Poulton SW, Canfield DE (2005) Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates. Chem Geol 214:209–221

    Article  Google Scholar 

  • Qie W, Liu J, Chen J, Wang X, Mii H-S, Zhang X, Huang X, Yao L, Algeo TJ, Luo G (2015) Local overprints on the global carbonate δ13C signal in Devonian-Carboniferous boundary successions of South China. Palaeogeogr Palaeoclimatol Palaeoecol 418:290–303

    Article  Google Scholar 

  • Ridgwell A (2005) A mid mesozoic revolution in the regulation of ocean chemistry. Mar Geol 217:339–357

    Article  Google Scholar 

  • Ridgwell A, Zeebe RE (2005) The role of the global carbonate cycle in the regulation and evolution of the Earth system. Earth Planet Sci Lett 234:299–315

    Article  Google Scholar 

  • Schrag DP, Higgins JA, Macdonald FA, Johnston DT (2013) Authigenic carbonate and the history of the global carbon cycle. Science 339:540–543

    Article  Google Scholar 

  • Schroller-Lomnitz U, Hensen C, Dal AW, Scholz F, Clemens D, Sommer S, Noffke A, Wallmann K (2019) Dissolved benthic phosphate, iron and carbon fluxes in the Mauritanian upwelling system and implications for ongoing deoxygenation. Deep-Sea Res Part I 143:70–84

    Article  Google Scholar 

  • Sepkoski JJ Jr, Miller AI (1985) Evolutionary faunas and the distribution of Paleozoic benthic communities. In: Valentine JW (ed) Phanerozoic diversity patterns: profiles in macroevolution. Princeton University Press, Princeton, New Jersey, pp 153–190

    Google Scholar 

  • Severmann S, McManus J, Berelson WM, Hammond DE (2010) The continental shelf benthic iron flux and its isotope composition. Geochim Cosmochim Acta 74:3984–4004

    Article  Google Scholar 

  • Shen B, Xiao S, Bao H, Kaufman AJ, Zhou C, Yuan X (2011) Carbon, sulfur, and oxygen isotope evidence for a strong depth gradient and oceanic oxidation after the Ediacaran Hankalchough glaciation. Geochim Cosmochim Acta 75:1357–1373

    Article  Google Scholar 

  • Song H, Tong J, Algeo TJ, Horacek M, Qiu H, Song H, Tian L, Chen Z-Q (2013) Large vertical δ13C DIC gradients in Early Triassic seas of the South China craton: Implications for oceanographic changes related to Siberian Traps volcanism. Glob Planet Change 105:7–20

    Article  Google Scholar 

  • Sperling EA, Wolock CJ, Morgan AS, Gill BC, Kunzmann M, Halverson GP, Macdonald FA, Knoll AH, Johnston DT (2015) Statistical analysis of iron geochemical data suggests limited Late Proterozoic oxygenation. Nature 523:451–454

    Article  Google Scholar 

  • Sundquist ET, Ackerman KV (2014) The geologic history of the carbon cycle. Treatise on geochemistry. Elsvier, Amsterdam, pp 361–398

    Book  Google Scholar 

  • Swanson-Hysell NL, Rose CV, Calmet CC, Halverson GP, Hurtgen MT, Maloof AC (2010) Cryogenian glaciation and the onset of carbon-isotope decoupling. Science 328:608–611

    Article  Google Scholar 

  • Swart PK (2015) The geochemistry of carbonate diagenesis: the past, present and future. Sedimentology 62:1233–1304

    Article  Google Scholar 

  • Tagliabue A, Bopp L (2008) Towards understanding global variability in ocean Carbon-13. Glob Biogeochem Cycles 22

  • Tagliabue A, Bowie AR, Boyd PW, Buck KN, Johnson KS, Saito MA (2017) The integral role of iron in ocean biogeochemistry. Nature 543:51–59

    Article  Google Scholar 

  • Tucker ME, Wright VP (1990) Carbonate sedimentology. Wiley, New Jersey

    Book  Google Scholar 

  • Vachard D, Pille L, Gaillot J (2010) Palaeozoic Foraminifera: systematics, palaeoecology and responses to global changes. Rev Micropaléontol 53:209–254

    Article  Google Scholar 

  • Volkov II (2000) Dissolved inorganic carbon and its isotopic composition in the waters of anoxic marine basins. Oceanology 40:499–502

    Google Scholar 

  • Wang XQ, Jiang GG, Shi XY, Xiao SH (2016) Paired carbonate and organic carbon isotope variations of the ediacaran doushantuo formation from an upper slope section at Siduping, South China. Precambrian Res 273:53–66

    Article  Google Scholar 

  • Wang Z, Guo W, Nie T, Ma H, Huang T, Sun Y, Shen B (2019) Is seawater geochemical composition recorded in marine carbonate? evidence from iron and manganese contents in Late Devonian carbonate rocks. Acta Geochimica 38:173–189

    Article  Google Scholar 

  • Wu X, Liao S (2001) Foraminiferal zonation of early carboniferous from the south-western margin of Yangtze platform. Acta Micropalaeontol Sin 18:293–308

    Google Scholar 

  • Xiao SH, Narbonne GM, Zhou CM, Laflamme M, Grazhdankin DV, Moczydlowska-Vidal M, Cui H (2016) Towards an Ediacaran time scale: problems, protocols, and prospects. Episodes 39:540–555

    Article  Google Scholar 

  • Xiao S, Cui H, Kang J, McFadden KA, Kaufman AJ, Kitajima K, Fournelle JH, Schwid M, Nolan M, Baele J-M, Valley JW (2020) Using SIMS to decode noisy stratigraphic δ13C variations in Ediacaran carbonates. Precambrian Res 343:105686

    Article  Google Scholar 

  • Zeebe RE (2012) History of seawater carbonate chemistry, atmospheric CO2, and ocean acidification. Annu Rev Earth Planet Sci 40(40):141–165

    Article  Google Scholar 

  • Zhou CM, Guan CG, Cui H, Ouyang Q, Wang W (2016) Methane-derived authigenic carbonate from the lower Doushantuo Formation of South China: implications for seawater sulfate concentration and global carbon cycle in the early Ediacaran ocean. Palaeogeogr Palaeoclimatol Palaeoecol 461:145–155

    Article  Google Scholar 

  • Zhu MY, Zhang JM, Yang AH (2007) Integrated Ediacaran (Sinian) chronostratigraphy of South China. Palaeogeogr Palaeoclimatol Palaeoecol 254:7–61

    Article  Google Scholar 

Download references

Acknowledgement

This study was supported by National Science Foundation of China (No. 41772015 and No. 41772359).

Funding

This study was supported by the National Science Foundation of China (No. 41772015 to Sun and No. 41772359 to Shen).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Shen.

Ethics declarations

Conflicts of interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 39 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, W., Nie, T., Peng, Y. et al. Validating the deep time carbonate carbon isotope records: effect of benthic flux on seafloor carbonate. Acta Geochim 40, 271–286 (2021). https://doi.org/10.1007/s11631-021-00467-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-021-00467-1

Keywords

Navigation