Skip to main content
Log in

Adsorption removal of roxarsone, arsenite(III), and arsenate(V) using iron-modified sorghum straw biochar and its kinetics

  • Original Article
  • Published:
Acta Geochimica Aims and scope Submit manuscript

Abstract

Arsenic (As) contamination in groundwater is a major problem in many countries, which causes serious health issues. In this paper, a novel method has been developed for the simultaneous removal of ROX and As(III/V) using the modified sorghum straw biochar (MSSB). The MSSB was characterized by X-ray diffraction, scanning electron microscopy, Fourier Transform Infrared, and Brunauer–Emmet–Teller (BET) surface area. The removal performance of MSSB for ROX, arsenite [As(III)], and arsenate (As(V)) was investigated using batch experiments. At pH of 5, the arsenic concentration of 1.0 mg/L, adsorbent dose of 1.0 g/L, the maximum adsorption capacities of ROX, As(III), and As(V) were 12.4, 5.3, and 23.0 mg/g, respectively. The adsorption behaviors were fit well with the Langmuir and the pseudo-second-order rate model. The results showed that MSSB acted as a highly effective adsorbent to simultaneously remove the composite pollution system consisted of ROX and As(III/V) in aqueous solutions, providing a promising method in environmental restoration applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ali W, Rasool A, Junaid M, Zhang H (2019) A comprehensive review on current status, mechanism, and possible sources of arsenic contamination in groundwater: a global perspective with prominence of Pakistan scenario. Environ Geochem Health 41(2):737–760

    Article  Google Scholar 

  • Ansone L, Klavins M, Viksna A (2013) Arsenic removal using natural biomaterial-based sorbents. Environ Geochem Health 35(5):633–642

    Article  Google Scholar 

  • Asere TG, Stevens CV, Du Laing G (2019) Use of (modified) natural adsorbents for arsenic remediation: a review. Sci Total Environ 676:706–720

    Article  Google Scholar 

  • Calugaru IL, Neculita CM, Genty T, Zagury GJ (2019) Removal efficiency of As(V) and Sb(III) in contaminated neutral drainage by Fe-loaded biochar. Environ Sci Pollut Res 26(9):9322–9332

    Article  Google Scholar 

  • Chandra V, Park J, Chun YS, Lee JW, Hwang I, Kim KS (2010) Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 4(7):3979–3986

    Article  Google Scholar 

  • Cheraghi M, Lorestani B, Merrikhpour H, Mosaed HP (2014) Assessment efficiency of tea wastes in arsenic removal from aqueous solution. Desalin Water Treat 52:7235–7240

    Article  Google Scholar 

  • Danish MI, Qazi IA, Zeb A, Habib A, Awan MA, Khan Z (2013) Arsenic removal from aqueous solution using pure and metal-doped titania nanoparticles coated on glass beads: adsorption and column studies. J Nanomater 2013:4979–4984

    Article  Google Scholar 

  • Dixit S, Hering JG (2003) Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility. Environ Sci Technol 37(18):4182–4189

    Article  Google Scholar 

  • Dupont L, Jolly G, Aplincourt M (2007) Arsenic adsorption on lignocellulosic substrate loaded with ferric ion. Environ Chem Lett 5(3):125–129

    Article  Google Scholar 

  • Ebrahimi R, Maleki A, Shahmoradi B, Daraei H, Mahvi AH, Barati AH, Eslami A (2013) Elimination of arsenic contamination from water using chemically modified wheat straw. Desalin Water Treat 51:2306–2316

    Article  Google Scholar 

  • Eisler R (2004) Arsenic hazards to humans, plants, and animals from gold mining. Rev Environ Contam Toxicol 180:133–165

    Google Scholar 

  • Fan W (2013) Study on arsenic adsorption performance by sulfhydryl silane modified oxidation graphite. Environ Chem 32:810–818

    Google Scholar 

  • Feng Z, Chen N, Feng C, Fan C, Wang H, Deng Y, Gao Y (2019) Roles of functional groups and irons on bromate removal by FeCl3 modified porous carbon. Appl Surf Sci 488:681–687

    Article  Google Scholar 

  • Frensemeier LM, Buter L, Vogel M, Karst U (2017) Investigation of the oxidative transformation of roxarsone by electrochemistry coupled to hydrophilic interaction liquid chromatography/mass spectrometry. J Anal At Spectrom 32(1):153–161

    Article  Google Scholar 

  • Fu W, Lu D, Yao H, Yuan S, Wang W, Gong M, Hu Z (2020) Simultaneous roxarsone photocatalytic degradation and arsenic adsorption removal by TiO2/FeOOH hybrid. Environ Sci Pollut Res 27:1–9

    Article  Google Scholar 

  • Gomez MA, Berre JL, Assaaoudi H, Demopoulos GP (2011) Raman spectroscopic study of the hydrogen and arsenate bonding environment in isostructural synthetic arsenates of the variscite group—M3+ AsO4·2H2O (M3+ = Fe, Al, In and Ga): implications for arsenic release in water. J Raman Spectrosc 42(1):62–71

    Article  Google Scholar 

  • Guo S, Feng B, Zhang H (2011) Simultaneous determination of trace arsenic and antimony in Fomes Officinalis Ames with hydride generation atomic fluorescence spectrometry. J Fluoresc 21(3):1281–1284

    Article  Google Scholar 

  • Gupta VK, Saini VK, Jain N (2005) Adsorption of As(III) from aqueous solutions by iron oxide-coated sand. J Colloid Interface Sci 288(1):55–60

    Article  Google Scholar 

  • Guzmán-Fierro V, Moraga R, Leon C, Campos VL, Smith CT, Mondaca MA (2015) Isolation and characterization of an aerobic bacterial consortium able to degrade roxarsone. Int J Environ Sci Technol 12(4):1353–1362

    Article  Google Scholar 

  • Hao L, Liu M, Wang N, Li G (2018) A critical review on arsenic removal from water using iron-based adsorbents. RSC Adv 8(69):39545–39560

    Article  Google Scholar 

  • Hossain I, Anjum N, Tasnim T (2016) Removal of arsenic from contaminated water utilizing tea waste. Int J Environ Sci Technol 13(3):843–848

    Article  Google Scholar 

  • Hu J, Tong Z, Hu Z, Chen G, Chen T (2012) Adsorption of roxarsone from aqueous solution by multi-walled carbon nanotubes. J Colloid Interface Sci 377(1):355–361

    Article  Google Scholar 

  • Hubbe MA, Azizian S, Douven S (2019) Implications of apparent pseudo-second-order adsorption kinetics onto cellulosic materials: a review. BioResources 14(3):7582–7626

    Article  Google Scholar 

  • Iglesias O, De Dios MA, Pazos M, Sanroman MA (2013) Using iron-loaded sepiolite obtained by adsorption as a catalyst in the electro-Fenton oxidation of Reactive Black 5. Environ Sci Pollut Res 20(9):5983–5993

    Article  Google Scholar 

  • Jahangiri K, Yousefi N, Ghadiri SK, Fekri R, Bagheri A, Talebi SS (2019) Enhancement adsorption of hexavalent chromium onto modified fly ash from aqueous solution; optimization; isotherm, kinetic and thermodynamic study. J Dispersion Sci Technol 40(8):1147–1158

    Article  Google Scholar 

  • Ji Y, Shi Y, Kong D, Lu J (2016) Degradation of roxarsone in a sulfate radical mediated oxidation process and formation of polynitrated by-products. RSC Adv 6(85):82040–82048

    Article  Google Scholar 

  • Kim J, Benjamin MM (2004) Modeling a novel ion exchange process for arsenic and nitrate removal. Water Res 38(8):2053–2062

    Article  Google Scholar 

  • Kumari P, Sharma P, Srivastava S, Srivastava MM (2005) Arsenic removal from the aqueous system using plant biomass: a bioremedial approach. J Ind Microbiol Biotechnol 32(11):521–526

    Article  Google Scholar 

  • Langmuir I (1917) The constitution and fundamental properties of solids and liquids. J Frankl Inst Eng Appl Math 183(1):102–105

    Article  Google Scholar 

  • Lee KE, Gomez MA, Elouatik S, Demopoulos GP (2010) Further understanding of the adsorption mechanism of N719 sensitizer on anatase TiO2 films for DSSC applications using vibrational spectroscopy and confocal raman imaging. Langmuir 26(12):9575–9583

    Article  Google Scholar 

  • Li B, Zhu X, Hu K, Li Y, Feng J, Shi J, Gu J (2016) Defect creation in metal-organic frameworks for rapid and controllable decontamination of roxarsone from aqueous solution. J Hazard Mater 302:57–64

    Article  Google Scholar 

  • Lin X, Wang L, Jiang S, Cui L, Wu G (2019) Iron-doped chitosan microsphere for As(III) adsorption in aqueous solution: kinetic, isotherm and thermodynamic studies. Korean J Chem Eng 36(7):1102–1114

    Article  Google Scholar 

  • Liu ZP (2007) The sorption characteristics of roxarsone in soils. J Agro Environ Sci 06:2075–2079

    Google Scholar 

  • Lu D, Ji F, Wang W, Yuan S, Hu Z, Chen T (2014) Adsorption and photocatalytic decomposition of roxarsone by TiO2 and its mechanism. Environ Sci Pollut Res 21(13):8025–8035

    Article  Google Scholar 

  • Ma J, Zhuang Y, Yu F (2015) Equilibrium, kinetic and thermodynamic adsorption studies of organic pollutants from aqueous solution onto CNT/C@Fe/chitosan composites. New J Chem 39(12):9299–9305

    Article  Google Scholar 

  • Mahaninia MH, Wilson LD (2017) A kinetic uptake study of roxarsone using cross-linked chitosan beads. Ind Eng Chem Res 56(7):1704–1712

    Article  Google Scholar 

  • Mohanty D (2017) Conventional as well as emerging arsenic removal technologies—a critical review. Water Air Soil Pollut 228(10):1–21

    Article  Google Scholar 

  • Murugesan GS, Sathishkumar M, Swaminathan K (2006) Arsenic removal from groundwater by pretreated waste tea fungal biomass. Biores Technol 97(3):483–487

    Article  Google Scholar 

  • Namasivayam C, Senthilkumar S (1998) Removal of arsenic(V) from aqueous solution using industrial solid waste: Adsorption rates and equilibrium studies. Ind Eng Chem Res 37(12):4816–4822

    Article  Google Scholar 

  • Ng K, Ujang Z, Leclech P (2004) Arsenic removal technologies for drinking water treatment. Environ Sci Biotechnol 3(1):43–53

    Article  Google Scholar 

  • Ocinski D, Jacukowiczsobala I, Kociolekbalawejder E (2016) Alginate beads containing water treatment residuals for arsenic removal from water—formation and adsorption studies. Environ Sci Pollut Res 23(24):24527–24539

    Article  Google Scholar 

  • Pal P, Ahammad SZ, Pattanayak A, Bhattacharya P (2007) Removal of arsenic from drinking water by chemical precipitation - a modeling and simulation study of the physical-chemical processes. Water Environ Res 79(4):357–366

    Article  Google Scholar 

  • Philippova O, Barabanova A, Molchanov V, Khokhlov A (2011) Magnetic polymer beads: recent trends and developments in synthetic design and applications. Eur Polymer J 47(4):542–559

    Article  Google Scholar 

  • Pokhrel D, Viraraghavan T (2006) Arsenic removal from aqueous solution by iron oxide-coated fungal biomass: a factorial design analysis. Water Air Soil Pollut 173(1):195–208

    Article  Google Scholar 

  • Sarntanayoot P, Fuangswasdi S, Imyim A (2019) Iron nanoparticle-modified water treatment residues for adsorption of As(III) and As(V) and their cement-based solidification/stabilization. Int J Environ Sci Technol 16(8):4285–4292

    Article  Google Scholar 

  • Seidel A, Waypa JJ, Elimelech M (2001) Role of charge (Donnan) exclusion in removal of arsenic from water by a negatively charged porous nanofiltration membrane. Environ Eng Sci 18(2):105–113

    Article  Google Scholar 

  • Setyono D, Valiyaveettil S (2014) Multi-metal oxide incorporated microcapsules for efficient As(III) and As(V) removal from water. RSC Adv 4(95):53365–53373

    Article  Google Scholar 

  • Solesardans M, Gamisans X, Dorado AD, Laoluque C (2016) Exploring arsenic adsorption at low concentration onto modified leonardite. Water Air Soil Pollut 227(4):128

    Article  Google Scholar 

  • Solic M, Maletic S, Isakovski MK, Nikic J, Watson M, Konya Z, Trickovic J (2020) Comparing the adsorption performance of multiwalled carbon nanotubes oxidized by varying degrees for removal of low levels of copper, nickel and chromium(VI) from aqueous solutions. Water 12(3):723

    Article  Google Scholar 

  • Su H, Ye Z, Hmidi N, Subramanian R (2017) Carbon nanosphere–iron oxide nanocomposites as high-capacity adsorbents for arsenic removal. RSC Adv 7(57):36138–36148

    Article  Google Scholar 

  • Tian C, Zhao J, Zhang J, Chu S, Dang Z, Lin Z et al (2017) Enhanced removal of roxarsone by fe3o4@3d graphene nanocomposites: synergistic adsorption and mechanism. Nano, Environmental Science, p 4

    Google Scholar 

  • Tian Y, Wu M, Lin X, Huang P, Huang Y (2011) Synthesis of magnetic wheat straw for arsenic adsorption. J Hazard Mater 193:10–16

    Article  Google Scholar 

  • Uner O, Gecgel U, Bayrak Y (2016) Adsorption of methylene blue by an efficient activated carbon prepared from citrullus lanatus rind: kinetic, isotherm, thermodynamic, and mechanism analysis. Water Air Soil Pollut 227(7):247

    Article  Google Scholar 

  • Ustinov EA, Do DD (2002) Adsorption in slit-like pores of activated carbons: improvement of the Horvath and Kawazoe method. Langmuir 18(12):4637–4647

    Article  Google Scholar 

  • Wang Y, Wang S, Zhang G, Wang X, Zang S, Jia Y (2019) Removal of As(V) and As(III) species from wastewater by adsorption on coal fly ash. Desalin Water Treat 151:242–250

    Article  Google Scholar 

  • WHO (2001). http://www.who.int/inf/en/index-pr.2002.html

  • Xie X, Zhao W, Hu Y, Xu X, Cheng H (2019) Permanganate oxidation and ferric ion precipitation (KMnO4-Fe(III)) process for treating phenylarsenic compounds. Chem Eng J 357:600–610

    Article  Google Scholar 

  • Yadav MK, Gupta AK, Ghosal PS, Mukherjee A (2020) Remediation of carcinogenic arsenic by pyroaurite-based green adsorbent: isotherm, kinetic, mechanistic study, and applicability in real-life groundwater. Environ Sci Pollut Res 27:24982–24998

    Article  Google Scholar 

  • Yang X, Xu G, Yu H, Zhang Z (2016) Preparation of ferric-activated sludge-based adsorbent from biological sludge for tetracycline removal. Biores Technol 211:566–573

    Article  Google Scholar 

  • Yasinta J, Emery DV, Daniel M (2018) A comparative study on removal of hazardous anions from water by adsorption: a review. Int J Chem Eng 2018:1–21

    Google Scholar 

  • Yu X, Han X, Chang C, Hu Y, Xu C, Fang S (2020) Corncob-derived activated carbon for roxarsone removal from aqueous solution: isotherms, kinetics, and mechanism. Environ Sci Pollut Res 27(13):15785–15797

    Article  Google Scholar 

  • Zhang G, Yuan Z, Lei L, Lin J, Wang X, Wang S, Jia Y (2019) Arsenic redistribution and transformation during Fe(II)-catalyzed recrystallization of As-adsorbed ferrihydrite under anaerobic conditions. Chem Geol 525:380–389

    Article  Google Scholar 

  • Zhang Y, Liu J (2019) Density functional theory study of arsenic adsorption on the Fe2O3 (001) surface. Energy Fuels 33(2):1414–1421

    Article  Google Scholar 

  • Zhu S, Zhao J, Zhao N, Yang X, Chen C, Shang J (2020) Goethite modified biochar as a multifunctional amendment for cationic Cd(II), anionic As(III), roxarsone, and phosphorus in soil and water. J Clean Prod 247:119579

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 41773136 and 41703129), Innovation Talent Support Project of Liaoning (Grant No. LR2017073), the National Key Rand D Program of China (No. 2017YFD0800301), the basic research projects of Source-sink transformation of arsenic and roxarsone in sediments (XXLJ 2019007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan Wang or Xiuming Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zang, S., Zuo, Y., Wang, J. et al. Adsorption removal of roxarsone, arsenite(III), and arsenate(V) using iron-modified sorghum straw biochar and its kinetics. Acta Geochim 40, 409–418 (2021). https://doi.org/10.1007/s11631-021-00466-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-021-00466-2

Keywords

Navigation